update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: t5-
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Rouge1
|
24 |
type: rouge
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,14 +30,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
# my_awesome_billsum_model
|
32 |
|
33 |
-
This model is a fine-tuned version of [t5-
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Rouge1: 0.
|
37 |
-
- Rouge2: 0.
|
38 |
-
- Rougel: 0.
|
39 |
-
- Rougelsum: 0.
|
40 |
-
- Gen Len:
|
41 |
|
42 |
## Model description
|
43 |
|
@@ -57,22 +57,37 @@ More information needed
|
|
57 |
|
58 |
The following hyperparameters were used during training:
|
59 |
- learning_rate: 2e-05
|
60 |
-
- train_batch_size:
|
61 |
-
- eval_batch_size:
|
62 |
- seed: 42
|
63 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
- lr_scheduler_type: linear
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
71 |
-
| No log | 1.0 |
|
72 |
-
| No log | 2.0 |
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: t5-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
22 |
metrics:
|
23 |
- name: Rouge1
|
24 |
type: rouge
|
25 |
+
value: 0.2033
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# my_awesome_billsum_model
|
32 |
|
33 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the billsum dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.6638
|
36 |
+
- Rouge1: 0.2033
|
37 |
+
- Rouge2: 0.1149
|
38 |
+
- Rougel: 0.1762
|
39 |
+
- Rougelsum: 0.1759
|
40 |
+
- Gen Len: 19.0
|
41 |
|
42 |
## Model description
|
43 |
|
|
|
57 |
|
58 |
The following hyperparameters were used during training:
|
59 |
- learning_rate: 2e-05
|
60 |
+
- train_batch_size: 4
|
61 |
+
- eval_batch_size: 8
|
62 |
- seed: 42
|
63 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
- lr_scheduler_type: linear
|
65 |
+
- num_epochs: 20
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
71 |
+
| No log | 1.0 | 248 | 1.9584 | 0.1999 | 0.1073 | 0.1716 | 0.1717 | 19.0 |
|
72 |
+
| No log | 2.0 | 496 | 1.8621 | 0.195 | 0.1045 | 0.1685 | 0.1682 | 19.0 |
|
73 |
+
| 2.2512 | 3.0 | 744 | 1.8095 | 0.1973 | 0.1109 | 0.1728 | 0.1727 | 19.0 |
|
74 |
+
| 2.2512 | 4.0 | 992 | 1.7797 | 0.1989 | 0.1102 | 0.1724 | 0.1724 | 19.0 |
|
75 |
+
| 1.8144 | 5.0 | 1240 | 1.7505 | 0.1997 | 0.112 | 0.1735 | 0.1736 | 19.0 |
|
76 |
+
| 1.8144 | 6.0 | 1488 | 1.7308 | 0.2003 | 0.1134 | 0.1746 | 0.1744 | 19.0 |
|
77 |
+
| 1.6898 | 7.0 | 1736 | 1.7145 | 0.199 | 0.1114 | 0.1732 | 0.173 | 19.0 |
|
78 |
+
| 1.6898 | 8.0 | 1984 | 1.7083 | 0.1977 | 0.1106 | 0.1718 | 0.1716 | 19.0 |
|
79 |
+
| 1.5997 | 9.0 | 2232 | 1.6983 | 0.2014 | 0.1127 | 0.175 | 0.175 | 19.0 |
|
80 |
+
| 1.5997 | 10.0 | 2480 | 1.6923 | 0.2014 | 0.1153 | 0.1754 | 0.1753 | 19.0 |
|
81 |
+
| 1.5403 | 11.0 | 2728 | 1.6826 | 0.2009 | 0.1134 | 0.1752 | 0.1751 | 19.0 |
|
82 |
+
| 1.5403 | 12.0 | 2976 | 1.6768 | 0.2003 | 0.1125 | 0.1745 | 0.1744 | 19.0 |
|
83 |
+
| 1.491 | 13.0 | 3224 | 1.6722 | 0.2016 | 0.1146 | 0.1756 | 0.1755 | 19.0 |
|
84 |
+
| 1.491 | 14.0 | 3472 | 1.6750 | 0.2039 | 0.1164 | 0.1773 | 0.177 | 19.0 |
|
85 |
+
| 1.4496 | 15.0 | 3720 | 1.6679 | 0.2023 | 0.1147 | 0.1765 | 0.1763 | 19.0 |
|
86 |
+
| 1.4496 | 16.0 | 3968 | 1.6677 | 0.2032 | 0.1148 | 0.177 | 0.1768 | 19.0 |
|
87 |
+
| 1.4241 | 17.0 | 4216 | 1.6640 | 0.2021 | 0.1135 | 0.1752 | 0.175 | 19.0 |
|
88 |
+
| 1.4241 | 18.0 | 4464 | 1.6645 | 0.2027 | 0.1155 | 0.1766 | 0.1764 | 19.0 |
|
89 |
+
| 1.4025 | 19.0 | 4712 | 1.6632 | 0.2028 | 0.1149 | 0.1761 | 0.1757 | 19.0 |
|
90 |
+
| 1.4025 | 20.0 | 4960 | 1.6638 | 0.2033 | 0.1149 | 0.1762 | 0.1759 | 19.0 |
|
91 |
|
92 |
|
93 |
### Framework versions
|