Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-optuna.zip +3 -0
- ppo-LunarLander-v2-optuna/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-optuna/data +99 -0
- ppo-LunarLander-v2-optuna/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-optuna/policy.pth +3 -0
- ppo-LunarLander-v2-optuna/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-optuna/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 268.20 +/- 22.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ce4cf267b50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce4cf267be0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce4cf267c70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce4cf267d00>", "_build": "<function ActorCriticPolicy._build at 0x7ce4cf267d90>", "forward": "<function ActorCriticPolicy.forward at 0x7ce4cf267e20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce4cf267eb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce4cf267f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7ce4cf270040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce4cf2700d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce4cf270160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce4cf2701f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ce4cf26c840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712110063528574947, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM9Qb06xKc/Ikecvs0l2L5m4oi9vRJLvgAAAAAAAAAAZugjPE80YbyJ5Kk9Ro9ovEqmt70pcCS+AACAPwAAgD9mg+c8FOKUuhA4aTuOylY5DV0MO82KgjYAAIA/AACAPwCr6rx74Ia66ymJspNt67B7Gei6TQBOMwAAgD8AAIA/AKo9vRIstz8lSgu/sK6bPAR0ETkJkg6+AAAAAAAAAAAzacu8WHXGPaWpLTvBXq++GcCou7iLcbwAAAAAAAAAAID5PL02lFO88PTpvEE/RT0g6Kg9o6ETvQAAgD8AAIA/ZjxbvIXArD6i75a+VtavvrxgUr51uW+9AAAAAAAAAACAZcG9BBsqP0KLr7zGqsK+hvrsvNYUNjwAAAAAAAAAAAA5rb2TwCA/BYshPT9/vb4RNG29NWCAvQAAAAAAAAAAmunzvKrzOT5gME+9a52avgfAor32Xta9AAAAAAAAAAA76oa+nYJYP2puxj6fyNu+X2aAvqlOwz4AAAAAAAAAAG3/Mj6OX4I/pyqpvS/z5r7GwZg+WyZWvgAAAAAAAAAAsxgzvQVogbsqTDg7NrgkPdrNtbzp97o3AACAPwAAgD/z/Pm9+KC/PvaHhD5NLaq+kfcSPlJnkj0AAAAAAAAAAACtwLz3bXE+PnM0vuP8qL7+BzG+lqSKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJfrSqlxfiMAWyUS+iMAXSUR0C1436t9x6wdX2UKGgGR0Bx1+2rn1WbaAdL62gIR0C147a7qY7adX2UKGgGR0BymDZElVtGaAdL5WgIR0C148XDBMzudX2UKGgGR0Bwm6oS+QEIaAdNAQFoCEdAtePHqFAVwnV9lChoBkdAbrygB91EE2gHS/BoCEdAtePaCK77K3V9lChoBkdAcS9n/kvK2mgHS95oCEdAteQrILgGbHV9lChoBkdAc0Nh3qzJIWgHS/9oCEdAteQudmQKbHV9lChoBkdAcI3L2pQ1rWgHS/BoCEdAteRWSjgydnV9lChoBkdAcFK/giu+y2gHTQEBaAhHQLXkWwEhaDB1fZQoaAZHQHMZGYrrgO1oB00FAWgIR0C15FvvKEFodX2UKGgGR0BwgiK/EfknaAdL7GgIR0C15IchC+lCdX2UKGgGR0BwnSTGHYYjaAdL6WgIR0C15JX1SOzZdX2UKGgGR0BwnhGYrrgPaAdNEQFoCEdAteSisU7CBXV9lChoBkdAcZh1lXiiqWgHS/loCEdAteSnazu4PXV9lChoBkdAchAsS00FbGgHS/JoCEdAteTyaKDTSnV9lChoBkdAcuXrB0p3HWgHTRgBaAhHQLXlCvWH1vl1fZQoaAZHQHMdDch1TzdoB0vaaAhHQLXlFxiG34N1fZQoaAZHQHD+rMTviLloB0vdaAhHQLXlGgmqo611fZQoaAZHQHOzzq4YrJ9oB00VAWgIR0C15R53cHnmdX2UKGgGR0BzjPi704BFaAdL9GgIR0C15U36uW8idX2UKGgGR0BzQKUILPUsaAdNEAFoCEdAteVTUlRgqnV9lChoBkdAb6+s/6frbGgHS+VoCEdAteWHUutfX3V9lChoBkdAbzT3bmEGq2gHS/RoCEdAteWa1stTUHV9lChoBkdAcb7ayKNyYGgHS+9oCEdAteW+1qnFYXV9lChoBkdAcTATuOS4fGgHS/5oCEdAteXSCXhOxnV9lChoBkdAckVCQtBfKWgHS/BoCEdAteXsHkcS5HV9lChoBkdAcPUR6F/QSmgHTR4BaAhHQLXmC2vB7/p1fZQoaAZHQHCO2yxA0KtoB0vwaAhHQLXmD4zabnZ1fZQoaAZHQHCzlgpjMFFoB00AAWgIR0C15hbnTy8SdX2UKGgGR0BwwOmelKsdaAdNGQFoCEdAteZV14gRsnV9lChoBkdAcO6XO4XoDGgHS+BoCEdAteZy8SPEKnV9lChoBkdAcZhbjtG/e2gHS91oCEdAteZ+HoHLR3V9lChoBkdAcftDnNgSe2gHS9xoCEdAteaGfseGPHV9lChoBkdAcLZaUzKs+2gHS/9oCEdAteaTxLCemXV9lChoBkdAcXPmdAgPmWgHTQwBaAhHQLXtjNc4YJp1fZQoaAZHQHJbniJfplloB0vpaAhHQLXtlYB/7SB1fZQoaAZHQHG66U/wAlxoB00HAWgIR0C17buVopQUdX2UKGgGR0BzJcOYplSTaAdL8mgIR0C17dblzU7TdX2UKGgGR0BzfX70nPVvaAdL12gIR0C17eR51Ng0dX2UKGgGR0ByAdiw0O3EaAdNAgFoCEdAte4BqQA+6nV9lChoBkdAb0oqgh8pkWgHS+NoCEdAte4Il3QlbHV9lChoBkdAclkXKr7wa2gHS95oCEdAte4ZLWZqmHV9lChoBkdAcstA8SwnpmgHS9RoCEdAte4utdRiw3V9lChoBkdAcxfL8rI5pGgHS9poCEdAte4w/7iyZHV9lChoBkdAcKRhE0BOpWgHS+VoCEdAte49nJ1aGHV9lChoBkdAcXvoqTbFj2gHS9doCEdAte5h+OOsDHV9lChoBkdAchuEvCdjG2gHS+BoCEdAte6J/vv0AnV9lChoBkdAcl7TNMXaamgHS/BoCEdAte6aHck+o3V9lChoBkdAcS93W4EwFmgHS/hoCEdAte69uBMBZXV9lChoBkdAcKZ7V8Ti82gHTQMBaAhHQLXuw8iOeat1fZQoaAZHQHIkw1R+BpZoB0vpaAhHQLXu30A93bF1fZQoaAZHQHA2xgeA/cFoB0vwaAhHQLXu8e1rqMZ1fZQoaAZHQG4pCjcmBvtoB0v4aAhHQLXvI0K7ZnN1fZQoaAZHQHO4/TgEU0xoB0vpaAhHQLXvKWCVbA11fZQoaAZHQHGlKB3A2ydoB0vtaAhHQLXvPQr+YMR1fZQoaAZHQHGURUrCm/FoB0vkaAhHQLXvTeC04R51fZQoaAZHQHG3uE7GNrFoB0vqaAhHQLXvXFXq7iB1fZQoaAZHQHLZC57PY4BoB0vXaAhHQLXvdYLLIPt1fZQoaAZHQExwNT987ZFoB0uvaAhHQLXviACW/rV1fZQoaAZHQHBN/giu+ytoB0vzaAhHQLXvjqZML4N1fZQoaAZHQHGz3ck+otNoB00DAWgIR0C175ADNhVmdX2UKGgGR0BxyOdCmdiEaAdL2GgIR0C175pL7GeddX2UKGgGR0BxiiMrEtNBaAdNCgFoCEdAte+uCFsYVXV9lChoBkdAc3Yx0+1SfmgHS9doCEdAte/JxcVxj3V9lChoBkdAbxPp4bCJoGgHS99oCEdAte/7Qtz0YnV9lChoBkdActNwRoRIz2gHS91oCEdAtfAl9y925nV9lChoBkdAcqqi8nNPg2gHS/VoCEdAtfA2BkI5YHV9lChoBkdAc9ocT8HfM2gHS/FoCEdAtfdWrMkhR3V9lChoBkdAc1zN0vGp/GgHS+FoCEdAtfdsBhhH9XV9lChoBkdAcXfKwpvxY2gHS/1oCEdAtfdyntOVPnV9lChoBkdAb/XwF1SwW2gHS/VoCEdAtfd7a7EpAnV9lChoBkdAc8gPnSv1UWgHS+BoCEdAtfd8FW4mTnV9lChoBkdAcEZbLEDQq2gHS/hoCEdAtfe/xlQMyHV9lChoBkdAcFAfZ26kI2gHS+loCEdAtffFn13+uXV9lChoBkdAc3WYYzi0fGgHS+RoCEdAtffK5jH4oXV9lChoBkdAcc0FirksBmgHS/hoCEdAtffbH4oJA3V9lChoBkdAbvv2t+1Bt2gHS+doCEdAtfgHi4rjHXV9lChoBkdAcTSnq3VkMGgHTQEBaAhHQLX4Dit7rs11fZQoaAZHQHFaeHSF49poB00fAWgIR0C1+A/FR51OdX2UKGgGR0BzVWo86mwaaAdL4mgIR0C1+DJIczZZdX2UKGgGR0ByUY9KVY6oaAdL4mgIR0C1+FtG3F1kdX2UKGgGR0ByTdUrCm/GaAdL6mgIR0C1+Hat9x6wdX2UKGgGR0ByOnpaA4GVaAdL2mgIR0C1+LZUxVQzdX2UKGgGR0BxcvLU1AJLaAdL2mgIR0C1+MXUDuBudX2UKGgGR0BwetgWrOqvaAdL5mgIR0C1+M/zWf9QdX2UKGgGR0BxWu1pj+aSaAdNCgFoCEdAtfjucx0uDnV9lChoBkdAcwyOby6MBWgHS/toCEdAtfj4nqmj03V9lChoBkdAc04O8kD6nGgHS9hoCEdAtfkIQjD8+HV9lChoBkdAdA1s+V1OkGgHS9BoCEdAtfkRSuQp4XV9lChoBkdAcFy6wdKdx2gHTQQBaAhHQLX5RMW43FV1fZQoaAZHQHKCFTFVDKJoB02FAmgIR0C1+VQjMV1wdX2UKGgGR0Bxfju4PPLQaAdNCwFoCEdAtflaF+NLlHV9lChoBkdAcGzwQlKK52gHS+5oCEdAtflxahYeT3V9lChoBkdAcREVsUIsy2gHS/hoCEdAtfl+iJwbVHV9lChoBkdAcRIL0z0pVmgHS/5oCEdAtfmBXT3IuHV9lChoBkdAcRRFvybx3GgHS9toCEdAtfmnELpiZ3V9lChoBkdAcK1nQpnYhGgHTQABaAhHQLX5sLZBcA11fZQoaAZHQHD1uEAYHgRoB0vaaAhHQLX5vqVQhwF1fZQoaAZHQHM+qFqSHM5oB0vgaAhHQLX6CptrKvF1fZQoaAZHQHAL0Ouq3mVoB0veaAhHQLX6EeiBXjl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 738, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRavpS4kpIHxpJTCYK+aX3tgCMA2luY5SKEEXO++EabTA8dg1fRW56lT91jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKpUOfbXVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-optuna.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a138c14c7c4ef5efb134c2f0fb3343e5cd73f61d26c039c29e42849d140a764
|
3 |
+
size 148261
|
ppo-LunarLander-v2-optuna/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-optuna/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ce4cf267b50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce4cf267be0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce4cf267c70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce4cf267d00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ce4cf267d90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ce4cf267e20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce4cf267eb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce4cf267f40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ce4cf270040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce4cf2700d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce4cf270160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce4cf2701f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ce4cf26c840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1007616,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1712110063528574947,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM9Qb06xKc/Ikecvs0l2L5m4oi9vRJLvgAAAAAAAAAAZugjPE80YbyJ5Kk9Ro9ovEqmt70pcCS+AACAPwAAgD9mg+c8FOKUuhA4aTuOylY5DV0MO82KgjYAAIA/AACAPwCr6rx74Ia66ymJspNt67B7Gei6TQBOMwAAgD8AAIA/AKo9vRIstz8lSgu/sK6bPAR0ETkJkg6+AAAAAAAAAAAzacu8WHXGPaWpLTvBXq++GcCou7iLcbwAAAAAAAAAAID5PL02lFO88PTpvEE/RT0g6Kg9o6ETvQAAgD8AAIA/ZjxbvIXArD6i75a+VtavvrxgUr51uW+9AAAAAAAAAACAZcG9BBsqP0KLr7zGqsK+hvrsvNYUNjwAAAAAAAAAAAA5rb2TwCA/BYshPT9/vb4RNG29NWCAvQAAAAAAAAAAmunzvKrzOT5gME+9a52avgfAor32Xta9AAAAAAAAAAA76oa+nYJYP2puxj6fyNu+X2aAvqlOwz4AAAAAAAAAAG3/Mj6OX4I/pyqpvS/z5r7GwZg+WyZWvgAAAAAAAAAAsxgzvQVogbsqTDg7NrgkPdrNtbzp97o3AACAPwAAgD/z/Pm9+KC/PvaHhD5NLaq+kfcSPlJnkj0AAAAAAAAAAACtwLz3bXE+PnM0vuP8qL7+BzG+lqSKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJfrSqlxfiMAWyUS+iMAXSUR0C1436t9x6wdX2UKGgGR0Bx1+2rn1WbaAdL62gIR0C147a7qY7adX2UKGgGR0BymDZElVtGaAdL5WgIR0C148XDBMzudX2UKGgGR0Bwm6oS+QEIaAdNAQFoCEdAtePHqFAVwnV9lChoBkdAbrygB91EE2gHS/BoCEdAtePaCK77K3V9lChoBkdAcS9n/kvK2mgHS95oCEdAteQrILgGbHV9lChoBkdAc0Nh3qzJIWgHS/9oCEdAteQudmQKbHV9lChoBkdAcI3L2pQ1rWgHS/BoCEdAteRWSjgydnV9lChoBkdAcFK/giu+y2gHTQEBaAhHQLXkWwEhaDB1fZQoaAZHQHMZGYrrgO1oB00FAWgIR0C15FvvKEFodX2UKGgGR0BwgiK/EfknaAdL7GgIR0C15IchC+lCdX2UKGgGR0BwnSTGHYYjaAdL6WgIR0C15JX1SOzZdX2UKGgGR0BwnhGYrrgPaAdNEQFoCEdAteSisU7CBXV9lChoBkdAcZh1lXiiqWgHS/loCEdAteSnazu4PXV9lChoBkdAchAsS00FbGgHS/JoCEdAteTyaKDTSnV9lChoBkdAcuXrB0p3HWgHTRgBaAhHQLXlCvWH1vl1fZQoaAZHQHMdDch1TzdoB0vaaAhHQLXlFxiG34N1fZQoaAZHQHD+rMTviLloB0vdaAhHQLXlGgmqo611fZQoaAZHQHOzzq4YrJ9oB00VAWgIR0C15R53cHnmdX2UKGgGR0BzjPi704BFaAdL9GgIR0C15U36uW8idX2UKGgGR0BzQKUILPUsaAdNEAFoCEdAteVTUlRgqnV9lChoBkdAb6+s/6frbGgHS+VoCEdAteWHUutfX3V9lChoBkdAbzT3bmEGq2gHS/RoCEdAteWa1stTUHV9lChoBkdAcb7ayKNyYGgHS+9oCEdAteW+1qnFYXV9lChoBkdAcTATuOS4fGgHS/5oCEdAteXSCXhOxnV9lChoBkdAckVCQtBfKWgHS/BoCEdAteXsHkcS5HV9lChoBkdAcPUR6F/QSmgHTR4BaAhHQLXmC2vB7/p1fZQoaAZHQHCO2yxA0KtoB0vwaAhHQLXmD4zabnZ1fZQoaAZHQHCzlgpjMFFoB00AAWgIR0C15hbnTy8SdX2UKGgGR0BwwOmelKsdaAdNGQFoCEdAteZV14gRsnV9lChoBkdAcO6XO4XoDGgHS+BoCEdAteZy8SPEKnV9lChoBkdAcZhbjtG/e2gHS91oCEdAteZ+HoHLR3V9lChoBkdAcftDnNgSe2gHS9xoCEdAteaGfseGPHV9lChoBkdAcLZaUzKs+2gHS/9oCEdAteaTxLCemXV9lChoBkdAcXPmdAgPmWgHTQwBaAhHQLXtjNc4YJp1fZQoaAZHQHJbniJfplloB0vpaAhHQLXtlYB/7SB1fZQoaAZHQHG66U/wAlxoB00HAWgIR0C17buVopQUdX2UKGgGR0BzJcOYplSTaAdL8mgIR0C17dblzU7TdX2UKGgGR0BzfX70nPVvaAdL12gIR0C17eR51Ng0dX2UKGgGR0ByAdiw0O3EaAdNAgFoCEdAte4BqQA+6nV9lChoBkdAb0oqgh8pkWgHS+NoCEdAte4Il3QlbHV9lChoBkdAclkXKr7wa2gHS95oCEdAte4ZLWZqmHV9lChoBkdAcstA8SwnpmgHS9RoCEdAte4utdRiw3V9lChoBkdAcxfL8rI5pGgHS9poCEdAte4w/7iyZHV9lChoBkdAcKRhE0BOpWgHS+VoCEdAte49nJ1aGHV9lChoBkdAcXvoqTbFj2gHS9doCEdAte5h+OOsDHV9lChoBkdAchuEvCdjG2gHS+BoCEdAte6J/vv0AnV9lChoBkdAcl7TNMXaamgHS/BoCEdAte6aHck+o3V9lChoBkdAcS93W4EwFmgHS/hoCEdAte69uBMBZXV9lChoBkdAcKZ7V8Ti82gHTQMBaAhHQLXuw8iOeat1fZQoaAZHQHIkw1R+BpZoB0vpaAhHQLXu30A93bF1fZQoaAZHQHA2xgeA/cFoB0vwaAhHQLXu8e1rqMZ1fZQoaAZHQG4pCjcmBvtoB0v4aAhHQLXvI0K7ZnN1fZQoaAZHQHO4/TgEU0xoB0vpaAhHQLXvKWCVbA11fZQoaAZHQHGlKB3A2ydoB0vtaAhHQLXvPQr+YMR1fZQoaAZHQHGURUrCm/FoB0vkaAhHQLXvTeC04R51fZQoaAZHQHG3uE7GNrFoB0vqaAhHQLXvXFXq7iB1fZQoaAZHQHLZC57PY4BoB0vXaAhHQLXvdYLLIPt1fZQoaAZHQExwNT987ZFoB0uvaAhHQLXviACW/rV1fZQoaAZHQHBN/giu+ytoB0vzaAhHQLXvjqZML4N1fZQoaAZHQHGz3ck+otNoB00DAWgIR0C175ADNhVmdX2UKGgGR0BxyOdCmdiEaAdL2GgIR0C175pL7GeddX2UKGgGR0BxiiMrEtNBaAdNCgFoCEdAte+uCFsYVXV9lChoBkdAc3Yx0+1SfmgHS9doCEdAte/JxcVxj3V9lChoBkdAbxPp4bCJoGgHS99oCEdAte/7Qtz0YnV9lChoBkdActNwRoRIz2gHS91oCEdAtfAl9y925nV9lChoBkdAcqqi8nNPg2gHS/VoCEdAtfA2BkI5YHV9lChoBkdAc9ocT8HfM2gHS/FoCEdAtfdWrMkhR3V9lChoBkdAc1zN0vGp/GgHS+FoCEdAtfdsBhhH9XV9lChoBkdAcXfKwpvxY2gHS/1oCEdAtfdyntOVPnV9lChoBkdAb/XwF1SwW2gHS/VoCEdAtfd7a7EpAnV9lChoBkdAc8gPnSv1UWgHS+BoCEdAtfd8FW4mTnV9lChoBkdAcEZbLEDQq2gHS/hoCEdAtfe/xlQMyHV9lChoBkdAcFAfZ26kI2gHS+loCEdAtffFn13+uXV9lChoBkdAc3WYYzi0fGgHS+RoCEdAtffK5jH4oXV9lChoBkdAcc0FirksBmgHS/hoCEdAtffbH4oJA3V9lChoBkdAbvv2t+1Bt2gHS+doCEdAtfgHi4rjHXV9lChoBkdAcTSnq3VkMGgHTQEBaAhHQLX4Dit7rs11fZQoaAZHQHFaeHSF49poB00fAWgIR0C1+A/FR51OdX2UKGgGR0BzVWo86mwaaAdL4mgIR0C1+DJIczZZdX2UKGgGR0ByUY9KVY6oaAdL4mgIR0C1+FtG3F1kdX2UKGgGR0ByTdUrCm/GaAdL6mgIR0C1+Hat9x6wdX2UKGgGR0ByOnpaA4GVaAdL2mgIR0C1+LZUxVQzdX2UKGgGR0BxcvLU1AJLaAdL2mgIR0C1+MXUDuBudX2UKGgGR0BwetgWrOqvaAdL5mgIR0C1+M/zWf9QdX2UKGgGR0BxWu1pj+aSaAdNCgFoCEdAtfjucx0uDnV9lChoBkdAcwyOby6MBWgHS/toCEdAtfj4nqmj03V9lChoBkdAc04O8kD6nGgHS9hoCEdAtfkIQjD8+HV9lChoBkdAdA1s+V1OkGgHS9BoCEdAtfkRSuQp4XV9lChoBkdAcFy6wdKdx2gHTQQBaAhHQLX5RMW43FV1fZQoaAZHQHKCFTFVDKJoB02FAmgIR0C1+VQjMV1wdX2UKGgGR0Bxfju4PPLQaAdNCwFoCEdAtflaF+NLlHV9lChoBkdAcGzwQlKK52gHS+5oCEdAtflxahYeT3V9lChoBkdAcREVsUIsy2gHS/hoCEdAtfl+iJwbVHV9lChoBkdAcRIL0z0pVmgHS/5oCEdAtfmBXT3IuHV9lChoBkdAcRRFvybx3GgHS9toCEdAtfmnELpiZ3V9lChoBkdAcK1nQpnYhGgHTQABaAhHQLX5sLZBcA11fZQoaAZHQHD1uEAYHgRoB0vaaAhHQLX5vqVQhwF1fZQoaAZHQHM+qFqSHM5oB0vgaAhHQLX6CptrKvF1fZQoaAZHQHAL0Ouq3mVoB0veaAhHQLX6EeiBXjl1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 738,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRavpS4kpIHxpJTCYK+aX3tgCMA2luY5SKEEXO++EabTA8dg1fRW56lT91jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKpUOfbXVidWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 512,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 6,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-optuna/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3942cea3159b175c063b94c7223f03666912f5539ac6ee7b62f35fb2c42cf6a8
|
3 |
+
size 88362
|
ppo-LunarLander-v2-optuna/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b460ffa17350039c080dfc04fdec68c769ac83774ed1f00694785afe30289c
|
3 |
+
size 43762
|
ppo-LunarLander-v2-optuna/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-optuna/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (157 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.19563020000004, "std_reward": 22.14588190213208, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-03T02:34:26.888967"}
|