update model & inference
Browse files- replace amsgrad with sgd+momentum (beta=0.9)
- set lr=0.2, and decay it by half every 32 epochs
- shrink h from 256 to 192
- separate hidden and latent, and set h_latent=64
- apply gradient clipping by L2 norm (max_norm=1)
- increase epochs from 160 to 192
- add tqdm progress bar display
- integrate incremental generation during inference
- decoder.pt +2 -2
- inference.py +16 -7
- model.py +37 -19
decoder.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deeea664de143a71c87e67ba2af78aa88320fcd401c2c12a40183060f78b0e15
|
3 |
+
size 2078336
|
inference.py
CHANGED
@@ -6,16 +6,21 @@ import torch.nn as nn
|
|
6 |
import torch.nn.functional as F
|
7 |
|
8 |
class DecoderGRU(nn.Module):
|
9 |
-
def __init__(self, hidden_size, output_size):
|
10 |
super(DecoderGRU, self).__init__()
|
11 |
-
self.
|
|
|
|
|
12 |
self.embedding = nn.Embedding(output_size, hidden_size)
|
13 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True)
|
14 |
self.out = nn.Linear(hidden_size, output_size)
|
15 |
|
16 |
def forward(self, encoder_sample, target_tensor=None, max_length=16):
|
17 |
batch_size = encoder_sample.size(0)
|
18 |
-
decoder_hidden = self.
|
|
|
|
|
|
|
19 |
if target_tensor is not None:
|
20 |
decoder_input = target_tensor
|
21 |
decoder_outputs, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
|
@@ -46,8 +51,9 @@ katakana = list('゠ァアィイゥウェエォオカガキギクグケゲコゴ
|
|
46 |
vocab = ['<pad>', '<sos>', '<eos>'] + katakana
|
47 |
vocab_dict = {v: k for k, v in enumerate(vocab)}
|
48 |
|
49 |
-
|
50 |
max_len=40
|
|
|
51 |
|
52 |
def detokenize(tokens):
|
53 |
if EOS_token in tokens:
|
@@ -55,6 +61,9 @@ def detokenize(tokens):
|
|
55 |
else:
|
56 |
return None
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
6 |
import torch.nn.functional as F
|
7 |
|
8 |
class DecoderGRU(nn.Module):
|
9 |
+
def __init__(self, latent_size, hidden_size, output_size):
|
10 |
super(DecoderGRU, self).__init__()
|
11 |
+
self.proj1 = nn.Linear(latent_size, latent_size)
|
12 |
+
self.proj_activation = nn.ReLU()
|
13 |
+
self.proj2 = nn.Linear(latent_size, 2 * hidden_size)
|
14 |
self.embedding = nn.Embedding(output_size, hidden_size)
|
15 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True)
|
16 |
self.out = nn.Linear(hidden_size, output_size)
|
17 |
|
18 |
def forward(self, encoder_sample, target_tensor=None, max_length=16):
|
19 |
batch_size = encoder_sample.size(0)
|
20 |
+
decoder_hidden = self.proj1(encoder_sample)
|
21 |
+
decoder_hidden = self.proj_activation(decoder_hidden)
|
22 |
+
decoder_hidden = self.proj2(decoder_hidden)
|
23 |
+
decoder_hidden = decoder_hidden.view(batch_size, 2, -1).permute(1, 0, 2).contiguous()
|
24 |
if target_tensor is not None:
|
25 |
decoder_input = target_tensor
|
26 |
decoder_outputs, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
|
|
|
51 |
vocab = ['<pad>', '<sos>', '<eos>'] + katakana
|
52 |
vocab_dict = {v: k for k, v in enumerate(vocab)}
|
53 |
|
54 |
+
h_latent=64
|
55 |
max_len=40
|
56 |
+
names=16
|
57 |
|
58 |
def detokenize(tokens):
|
59 |
if EOS_token in tokens:
|
|
|
61 |
else:
|
62 |
return None
|
63 |
|
64 |
+
while True:
|
65 |
+
print('generating names...')
|
66 |
+
for name in [detokenize(seq) for seq in dec(torch.randn(names,h_latent), max_length=max_len)[0].topk(1)[1].squeeze().tolist()]:
|
67 |
+
if name is not None:
|
68 |
+
print(name)
|
69 |
+
input("press enter to continue generation...")
|
model.py
CHANGED
@@ -5,6 +5,8 @@ import torch
|
|
5 |
import torch.nn as nn
|
6 |
from torch import optim
|
7 |
from torch.utils.data import DataLoader, Dataset
|
|
|
|
|
8 |
import torch.nn.functional as F
|
9 |
import pandas as pd
|
10 |
|
@@ -19,11 +21,16 @@ vocab_dict = {v: k for k, v in enumerate(vocab)}
|
|
19 |
|
20 |
texts = pd.read_csv('rolename.txt', header=None)[0].tolist()
|
21 |
vocab_size=len(vocab)
|
22 |
-
h=
|
|
|
23 |
max_len=40
|
24 |
bs=128
|
25 |
-
lr=
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def tokenize(text):
|
29 |
return [vocab_dict[ch] for ch in text]
|
@@ -50,15 +57,15 @@ class BatchNormVAE(nn.Module): # https://spaces.ac.cn/archives/7381/
|
|
50 |
return mu*scale_mu, sigma*scale_sigma
|
51 |
|
52 |
class EncoderVAEBiGRU(nn.Module):
|
53 |
-
def __init__(self, input_size, hidden_size, dropout_p=0.1):
|
54 |
super(EncoderVAEBiGRU, self).__init__()
|
55 |
self.hidden_size = hidden_size
|
56 |
self.embedding = nn.Embedding(input_size, hidden_size)
|
57 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True, bidirectional=True)
|
58 |
-
self.proj_mu = nn.Linear(4 * hidden_size,
|
59 |
-
self.proj_sigma = nn.Linear(4 * hidden_size,
|
60 |
self.dropout = nn.Dropout(dropout_p)
|
61 |
-
self.bn = BatchNormVAE(
|
62 |
|
63 |
def forward(self, input, input_lengths):
|
64 |
input_lengths = input_lengths.to('cpu')
|
@@ -76,16 +83,21 @@ class EncoderVAEBiGRU(nn.Module):
|
|
76 |
return eps * sigma + mu # var is sigma^2
|
77 |
|
78 |
class DecoderGRU(nn.Module):
|
79 |
-
def __init__(self, hidden_size, output_size):
|
80 |
super(DecoderGRU, self).__init__()
|
81 |
-
self.
|
|
|
|
|
82 |
self.embedding = nn.Embedding(output_size, hidden_size)
|
83 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True)
|
84 |
self.out = nn.Linear(hidden_size, output_size)
|
85 |
|
86 |
def forward(self, encoder_sample, target_tensor=None, max_length=16):
|
87 |
batch_size = encoder_sample.size(0)
|
88 |
-
decoder_hidden = self.
|
|
|
|
|
|
|
89 |
if target_tensor is not None:
|
90 |
decoder_input = target_tensor
|
91 |
decoder_outputs, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
|
@@ -136,7 +148,7 @@ dataloader = DataLoader(
|
|
136 |
generator=torch.Generator(device='cuda'),
|
137 |
)
|
138 |
|
139 |
-
def train_epoch(dataloader, encoder, decoder, optimizer):
|
140 |
total_loss = 0
|
141 |
nll = nn.NLLLoss()
|
142 |
for enc_text, enc_len, input_text, target_text in dataloader:
|
@@ -150,19 +162,25 @@ def train_epoch(dataloader, encoder, decoder, optimizer):
|
|
150 |
loss = loss_recons + loss_kld
|
151 |
loss.backward()
|
152 |
|
|
|
|
|
|
|
153 |
optimizer.step()
|
154 |
|
155 |
total_loss += loss.item()
|
156 |
return total_loss / len(dataloader)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
optimizer = optim.
|
|
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
for name in [detokenize(seq) for seq in
|
167 |
print(name)
|
168 |
-
torch.save(
|
|
|
5 |
import torch.nn as nn
|
6 |
from torch import optim
|
7 |
from torch.utils.data import DataLoader, Dataset
|
8 |
+
from torch.optim.lr_scheduler import StepLR
|
9 |
+
from tqdm.auto import tqdm
|
10 |
import torch.nn.functional as F
|
11 |
import pandas as pd
|
12 |
|
|
|
21 |
|
22 |
texts = pd.read_csv('rolename.txt', header=None)[0].tolist()
|
23 |
vocab_size=len(vocab)
|
24 |
+
h=192
|
25 |
+
h_latent=64
|
26 |
max_len=40
|
27 |
bs=128
|
28 |
+
lr=0.2
|
29 |
+
lr_step_size=32
|
30 |
+
lr_decay=0.5
|
31 |
+
momentum=0.9
|
32 |
+
epochs=192
|
33 |
+
grad_max_norm=1
|
34 |
|
35 |
def tokenize(text):
|
36 |
return [vocab_dict[ch] for ch in text]
|
|
|
57 |
return mu*scale_mu, sigma*scale_sigma
|
58 |
|
59 |
class EncoderVAEBiGRU(nn.Module):
|
60 |
+
def __init__(self, input_size, hidden_size, latent_size, dropout_p=0.1):
|
61 |
super(EncoderVAEBiGRU, self).__init__()
|
62 |
self.hidden_size = hidden_size
|
63 |
self.embedding = nn.Embedding(input_size, hidden_size)
|
64 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True, bidirectional=True)
|
65 |
+
self.proj_mu = nn.Linear(4 * hidden_size, latent_size)
|
66 |
+
self.proj_sigma = nn.Linear(4 * hidden_size, latent_size)
|
67 |
self.dropout = nn.Dropout(dropout_p)
|
68 |
+
self.bn = BatchNormVAE(latent_size)
|
69 |
|
70 |
def forward(self, input, input_lengths):
|
71 |
input_lengths = input_lengths.to('cpu')
|
|
|
83 |
return eps * sigma + mu # var is sigma^2
|
84 |
|
85 |
class DecoderGRU(nn.Module):
|
86 |
+
def __init__(self, latent_size, hidden_size, output_size):
|
87 |
super(DecoderGRU, self).__init__()
|
88 |
+
self.proj1 = nn.Linear(latent_size, latent_size)
|
89 |
+
self.proj_activation = nn.ReLU()
|
90 |
+
self.proj2 = nn.Linear(latent_size, 2 * hidden_size)
|
91 |
self.embedding = nn.Embedding(output_size, hidden_size)
|
92 |
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=2, batch_first=True)
|
93 |
self.out = nn.Linear(hidden_size, output_size)
|
94 |
|
95 |
def forward(self, encoder_sample, target_tensor=None, max_length=16):
|
96 |
batch_size = encoder_sample.size(0)
|
97 |
+
decoder_hidden = self.proj1(encoder_sample)
|
98 |
+
decoder_hidden = self.proj_activation(decoder_hidden)
|
99 |
+
decoder_hidden = self.proj2(decoder_hidden)
|
100 |
+
decoder_hidden = decoder_hidden.view(batch_size, 2, -1).permute(1, 0, 2).contiguous()
|
101 |
if target_tensor is not None:
|
102 |
decoder_input = target_tensor
|
103 |
decoder_outputs, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
|
|
|
148 |
generator=torch.Generator(device='cuda'),
|
149 |
)
|
150 |
|
151 |
+
def train_epoch(dataloader, encoder, decoder, optimizer, max_norm, norm_p=2):
|
152 |
total_loss = 0
|
153 |
nll = nn.NLLLoss()
|
154 |
for enc_text, enc_len, input_text, target_text in dataloader:
|
|
|
162 |
loss = loss_recons + loss_kld
|
163 |
loss.backward()
|
164 |
|
165 |
+
# gradient clipping by norm
|
166 |
+
nn.utils.clip_grad_norm_(list(encoder.parameters()) + list(decoder.parameters()), max_norm, norm_type=norm_p)
|
167 |
+
|
168 |
optimizer.step()
|
169 |
|
170 |
total_loss += loss.item()
|
171 |
return total_loss / len(dataloader)
|
172 |
|
173 |
+
encoder = EncoderVAEBiGRU(vocab_size, h, h_latent).train()
|
174 |
+
decoder = DecoderGRU(h_latent, h, vocab_size).train()
|
175 |
+
optimizer = optim.SGD(list(encoder.parameters()) + list(decoder.parameters()), lr=lr, momentum=momentum) # momentum
|
176 |
+
scheduler = StepLR(optimizer, step_size=lr_step_size, gamma=lr_decay)
|
177 |
|
178 |
+
with tqdm(range(epochs), desc='Training') as pbar:
|
179 |
+
for i in pbar:
|
180 |
+
pbar.set_postfix(loss=train_epoch(dataloader, encoder, decoder, optimizer, grad_max_norm))
|
181 |
+
scheduler.step()
|
182 |
|
183 |
+
decoder.eval()
|
184 |
+
for name in [detokenize(seq) for seq in decoder(torch.randn(8,h_latent), max_length=max_len)[0].topk(1)[1].squeeze().tolist()]:
|
185 |
print(name)
|
186 |
+
torch.save(decoder, 'decoder.pt')
|