Sumegh20 commited on
Commit
395e7fc
1 Parent(s): 5f74dba

Push to Hub

Browse files
DQN-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f293c65086dd82adf46cdb91ccbf18b18a23f5ff5d2eb0569dcd7f809eb9fe
3
+ size 1108550
DQN-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
DQN-CartPole-v1/data ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7168594dec10>",
9
+ "_build": "<function DQNPolicy._build at 0x7168594deca0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7168594ded30>",
11
+ "forward": "<function DQNPolicy.forward at 0x7168594dedc0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7168594dee50>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7168594deee0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7168594def70>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7168594dfdc0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ ":type:": "<class 'dict'>",
21
+ ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=",
22
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
23
+ "net_arch": [
24
+ 256,
25
+ 256
26
+ ]
27
+ },
28
+ "num_timesteps": 100000,
29
+ "_total_timesteps": 100000.0,
30
+ "_num_timesteps_at_start": 0,
31
+ "seed": null,
32
+ "action_noise": null,
33
+ "start_time": 1721811460312841925,
34
+ "learning_rate": 0.0001,
35
+ "tensorboard_log": null,
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAKgCED/NdKE+YfNaPAxqGT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": {
45
+ ":type:": "<class 'numpy.ndarray'>",
46
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAEdlDT/6vAI/9LeFPCmFF76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
47
+ },
48
+ "_episode_num": 2056,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1gAAAAAACMAWyUS+uMAXSUR0BOJy/9Hc1wdX2UKGgGR0BuwAAAAAAAaAdL9mgIR0BOQApz90ihdX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdATlvysjmjkHV9lChoBkdAcXAAAAAAAGgHTRcBaAhHQE539XtBv751fZQoaAZHQG2AAAAAAABoB0vsaAhHQE6PTR6Ww/x1fZQoaAZHQGvgAAAAAABoB0vfaAhHQE6kYE4ecQR1fZQoaAZHQG3AAAAAAABoB0vuaAhHQE666BAfMfR1fZQoaAZHQGxAAAAAAABoB0viaAhHQE7QfnOjZct1fZQoaAZHQHKQAAAAAABoB00pAWgIR0BO7NvGZNO/dX2UKGgGR0BwMAAAAAAAaAdNAwFoCEdATwXAKv3ajHV9lChoBkdAcTAAAAAAAGgHTRMBaAhHQE8f9AHE/B51fZQoaAZHQHAQAAAAAABoB00BAWgIR0BPON0NjLB9dX2UKGgGR0BxcAAAAAAAaAdNFwFoCEdAT1Ps/pt78nV9lChoBkdAcQAAAAAAAGgHTRABaAhHQE9t78ejmCB1fZQoaAZHQGvgAAAAAABoB0vfaAhHQE+Ct3fQ8fV1fZQoaAZHQHHQAAAAAABoB00dAWgIR0BPnsOf/WDpdX2UKGgGR0BwMAAAAAAAaAdNAwFoCEdAT7jnq3VkMHV9lChoBkdAbmAAAAAAAGgHS/NoCEdAT9E2R7qptXV9lChoBkdAdCAAAAAAAGgHTUIBaAhHQE/ybutwJgN1fZQoaAZHQHFQAAAAAABoB00VAWgIR0BQBrbQC0WudX2UKGgGR0BsoAAAAAAAaAdL5WgIR0BQEY5xR2r5dX2UKGgGR0BvgAAAAAAAaAdL/GgIR0BQHlqFh5PedX2UKGgGR0BrIAAAAAAAaAdL2WgIR0BQKT0QK8cudX2UKGgGR0ByYAAAAAAAaAdNJgFoCEdAUDcqc3EQ5HV9lChoBkdAaaAAAAAAAGgHS81oCEdAUED3VTaTOnV9lChoBkdAcwAAAAAAAGgHTTABaAhHQFBPN5+pfhN1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFBa4jrzGxV1fZQoaAZHQGlAAAAAAABoB0vKaAhHQFBkf51vETB1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFBwK5kK/mF1fZQoaAZHQHZwAAAAAABoB01nAWgIR0BQgXgxagVXdX2UKGgGR0BuwAAAAAAAaAdL9mgIR0BQjW+TNdJKdX2UKGgGR0BuIAAAAAAAaAdL8WgIR0BQmdaUzKs/dX2UKGgGR0BxMAAAAAAAaAdNEwFoCEdAUKb17IDHO3V9lChoBkdAa8AAAAAAAGgHS95oCEdAULGlhw2l23V9lChoBkdAcMAAAAAAAGgHTQwBaAhHQFC+iTt9hJB1fZQoaAZHQGngAAAAAABoB0vPaAhHQFDIhlDneSB1fZQoaAZHQHVwAAAAAABoB01XAWgIR0BQ2dAcDKYBdX2UKGgGR0BsQAAAAAAAaAdL4mgIR0BQ5TFVDKHPdX2UKGgGR0Br4AAAAAAAaAdL32gIR0BQ8B4t6HCXdX2UKGgGR0BwsAAAAAAAaAdNCwFoCEdAUP4AQxveg3V9lChoBkdAbWAAAAAAAGgHS+toCEdAUQsSg5BC2XV9lChoBkdAeWAAAAAAAGgHTZYBaAhHQFEgS9/SYw91fZQoaAZHQGxgAAAAAABoB0vjaAhHQFEry4nWrfd1fZQoaAZHQGmgAAAAAABoB0vNaAhHQFE2QsPJ7sx1fZQoaAZHQG/gAAAAAABoB0v/aAhHQFFETviLl3h1fZQoaAZHQHUgAAAAAABoB01SAWgIR0BRWFxXGOuJdX2UKGgGR0BxkAAAAAAAaAdNGQFoCEdAUWaFxn3+M3V9lChoBkdAbwAAAAAAAGgHS/hoCEdAUXQl+mWMTHV9lChoBkdAbIAAAAAAAGgHS+RoCEdAUYOol2NedHV9lChoBkdAbSAAAAAAAGgHS+loCEdAUZE6p5u63HV9lChoBkdAbAAAAAAAAGgHS+BoCEdAUZw8SwnpjnV9lChoBkdAa+AAAAAAAGgHS99oCEdAUac/iYLLIXV9lChoBkdAa+AAAAAAAGgHS99oCEdAUbFCiRGMGXV9lChoBkdAayAAAAAAAGgHS9loCEdAUbvlU6xPf3V9lChoBkdAbgAAAAAAAGgHS/BoCEdAUcaoybhFVnV9lChoBkdAbcAAAAAAAGgHS+5oCEdAUdGMZP2wmnV9lChoBkdAbyAAAAAAAGgHS/loCEdAUdyv/zasZHV9lChoBkdAayAAAAAAAGgHS9loCEdAUeaW5Yoy9HV9lChoBkdAb4AAAAAAAGgHS/xoCEdAUfMla8pTdnV9lChoBkdAcLAAAAAAAGgHTQsBaAhHQFIAKZDzAet1fZQoaAZHQG2gAAAAAABoB0vtaAhHQFILqVQhwER1fZQoaAZHQHCwAAAAAABoB00LAWgIR0BSGOQhfShKdX2UKGgGR0Bu4AAAAAAAaAdL92gIR0BSJnoX9BKMdX2UKGgGR0Bu4AAAAAAAaAdL92gIR0BSM3kYGdI5dX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BSPkwN9YwJdX2UKGgGR0BpAAAAAAAAaAdLyGgIR0BSR6VD8cdYdX2UKGgGR0BugAAAAAAAaAdL9GgIR0BSUyr1dxACdX2UKGgGR0Bt4AAAAAAAaAdL72gIR0BSXgmzByjpdX2UKGgGR0BqQAAAAAAAaAdL0mgIR0BSaQj+rELqdX2UKGgGR0Bw0AAAAAAAaAdNDQFoCEdAUnam0mdAgXV9lChoBkdAceAAAAAAAGgHTR4BaAhHQFKFIBRyfcx1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFKTB8hLXcx1fZQoaAZHQGqgAAAAAABoB0vVaAhHQFKfYHPeHi51fZQoaAZHQGzgAAAAAABoB0vnaAhHQFKql7tzCDV1fZQoaAZHQHMQAAAAAABoB00xAWgIR0BSuM8HObAldX2UKGgGR0ByUAAAAAAAaAdNJQFoCEdAUsfhFVktmXV9lChoBkdAcKAAAAAAAGgHTQoBaAhHQFLU84Pwuul1fZQoaAZHQGkgAAAAAABoB0vJaAhHQFLe3rleWv91fZQoaAZHQGwAAAAAAABoB0vgaAhHQFLoswtapxZ1fZQoaAZHQHIgAAAAAABoB00iAWgIR0BS9nww0wajdX2UKGgGR0BxYAAAAAAAaAdNFgFoCEdAUwR68g6ltXV9lChoBkdAa0AAAAAAAGgHS9poCEdAUxBZmqYJFHV9lChoBkdAbMAAAAAAAGgHS+ZoCEdAUxs8bJfYz3V9lChoBkdAa+AAAAAAAGgHS99oCEdAUyWGvfTCtXV9lChoBkdAceAAAAAAAGgHTR4BaAhHQFMyQ3xWkrR1fZQoaAZHQHCwAAAAAABoB00LAWgIR0BTPphfBvaUdX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAU0u0mdAgPnV9lChoBkdAeRAAAAAAAGgHTZEBaAhHQFNeBWxQizN1fZQoaAZHQGwgAAAAAABoB0vhaAhHQFNorS3LFGZ1fZQoaAZHQHOwAAAAAABoB007AWgIR0BTdsTWXkYGdX2UKGgGR0BvwAAAAAAAaAdL/mgIR0BTg1pPAO8TdX2UKGgGR0BrYAAAAAAAaAdL22gIR0BTjckMTewcdX2UKGgGR0BqYAAAAAAAaAdL02gIR0BTl8VpKzzFdX2UKGgGR0BtgAAAAAAAaAdL7GgIR0BTpYr4FiazdX2UKGgGR0Bo4AAAAAAAaAdLx2gIR0BTsK8cuJ1rdX2UKGgGR0BuIAAAAAAAaAdL8WgIR0BTvByCFsYVdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BTx3MQmNR4dX2UKGgGR0BygAAAAAAAaAdNKAFoCEdAU9YVwgkkbHV9lChoBkdAcLAAAAAAAGgHTQsBaAhHQFPkjkuHvc91fZQoaAZHQGwgAAAAAABoB0vhaAhHQFPwDxb0OEx1ZS4="
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 24975,
62
+ "observation_space": {
63
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
64
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
65
+ "dtype": "float32",
66
+ "bounded_below": "[ True True True True]",
67
+ "bounded_above": "[ True True True True]",
68
+ "_shape": [
69
+ 4
70
+ ],
71
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
72
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
73
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
74
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
79
+ ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRcPJgvJj2C1U0H7l/5vdtnQCMA2luY5SKEGFlweXjgUniq4TWt7nETxB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBdqzh/0AdWJ1Yi4=",
80
+ "n": "2",
81
+ "start": "0",
82
+ "_shape": [],
83
+ "dtype": "int64",
84
+ "_np_random": "Generator(PCG64)"
85
+ },
86
+ "n_envs": 1,
87
+ "buffer_size": 1000000,
88
+ "batch_size": 32,
89
+ "learning_starts": 100,
90
+ "tau": 1.0,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
99
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
100
+ "__init__": "<function ReplayBuffer.__init__ at 0x7168595fe280>",
101
+ "add": "<function ReplayBuffer.add at 0x7168595fe310>",
102
+ "sample": "<function ReplayBuffer.sample at 0x7168595fe3a0>",
103
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7168595fe430>",
104
+ "_maybe_cast_dtype": "<staticmethod object at 0x7168595e9e50>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc._abc_data object at 0x7168595f9fc0>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "exploration_initial_eps": 1.0,
115
+ "exploration_final_eps": 0.05,
116
+ "exploration_fraction": 0.1,
117
+ "target_update_interval": 10000,
118
+ "_n_calls": 100000,
119
+ "max_grad_norm": 10,
120
+ "exploration_rate": 0.05,
121
+ "lr_schedule": {
122
+ ":type:": "<class 'function'>",
123
+ ":serialized:": "gAWVswMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoD4wMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJRoCSmMAV+UhZRoDowEZnVuY5RLhUMCAAGUjAN2YWyUhZQpdJRSlGgVTk5oHSlSlIWUdJRSlGgjaD19lH2UKGgYaDRoJowZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKH2UaCpOaCtOaCxoGWgtTmguaDBHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhFXZRoR32UdYaUhlIwLg=="
124
+ },
125
+ "batch_norm_stats": [],
126
+ "batch_norm_stats_target": [],
127
+ "exploration_schedule": {
128
+ ":type:": "<class 'function'>",
129
+ ":serialized:": "gAWVfgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxiL2hvbWUvY2xvdWRjcmFmdHovYW5hY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtzQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
130
+ }
131
+ }
DQN-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86c5d4a675c4dcb47acc6f294aba3a736e53ca36cc1c8edde48d2030d871c7da
3
+ size 545952
DQN-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:610d2607e8298a347698350ce83c5f0867284ad86ba099f560ba50c6508253f2
3
+ size 545074
DQN-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
DQN-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 # 41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun 3 11:32:55 UTC 2
2
+ - Python: 3.9.19
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.4.0+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.70 +/- 15.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **CartPole-v1**
25
+ This is a trained model of a **DQN** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7168594dec10>", "_build": "<function DQNPolicy._build at 0x7168594deca0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7168594ded30>", "forward": "<function DQNPolicy.forward at 0x7168594dedc0>", "_predict": "<function DQNPolicy._predict at 0x7168594dee50>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7168594deee0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7168594def70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7168594dfdc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721811460312841925, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAKgCED/NdKE+YfNaPAxqGT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAEdlDT/6vAI/9LeFPCmFF76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 2056, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1gAAAAAACMAWyUS+uMAXSUR0BOJy/9Hc1wdX2UKGgGR0BuwAAAAAAAaAdL9mgIR0BOQApz90ihdX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdATlvysjmjkHV9lChoBkdAcXAAAAAAAGgHTRcBaAhHQE539XtBv751fZQoaAZHQG2AAAAAAABoB0vsaAhHQE6PTR6Ww/x1fZQoaAZHQGvgAAAAAABoB0vfaAhHQE6kYE4ecQR1fZQoaAZHQG3AAAAAAABoB0vuaAhHQE666BAfMfR1fZQoaAZHQGxAAAAAAABoB0viaAhHQE7QfnOjZct1fZQoaAZHQHKQAAAAAABoB00pAWgIR0BO7NvGZNO/dX2UKGgGR0BwMAAAAAAAaAdNAwFoCEdATwXAKv3ajHV9lChoBkdAcTAAAAAAAGgHTRMBaAhHQE8f9AHE/B51fZQoaAZHQHAQAAAAAABoB00BAWgIR0BPON0NjLB9dX2UKGgGR0BxcAAAAAAAaAdNFwFoCEdAT1Ps/pt78nV9lChoBkdAcQAAAAAAAGgHTRABaAhHQE9t78ejmCB1fZQoaAZHQGvgAAAAAABoB0vfaAhHQE+Ct3fQ8fV1fZQoaAZHQHHQAAAAAABoB00dAWgIR0BPnsOf/WDpdX2UKGgGR0BwMAAAAAAAaAdNAwFoCEdAT7jnq3VkMHV9lChoBkdAbmAAAAAAAGgHS/NoCEdAT9E2R7qptXV9lChoBkdAdCAAAAAAAGgHTUIBaAhHQE/ybutwJgN1fZQoaAZHQHFQAAAAAABoB00VAWgIR0BQBrbQC0WudX2UKGgGR0BsoAAAAAAAaAdL5WgIR0BQEY5xR2r5dX2UKGgGR0BvgAAAAAAAaAdL/GgIR0BQHlqFh5PedX2UKGgGR0BrIAAAAAAAaAdL2WgIR0BQKT0QK8cudX2UKGgGR0ByYAAAAAAAaAdNJgFoCEdAUDcqc3EQ5HV9lChoBkdAaaAAAAAAAGgHS81oCEdAUED3VTaTOnV9lChoBkdAcwAAAAAAAGgHTTABaAhHQFBPN5+pfhN1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFBa4jrzGxV1fZQoaAZHQGlAAAAAAABoB0vKaAhHQFBkf51vETB1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFBwK5kK/mF1fZQoaAZHQHZwAAAAAABoB01nAWgIR0BQgXgxagVXdX2UKGgGR0BuwAAAAAAAaAdL9mgIR0BQjW+TNdJKdX2UKGgGR0BuIAAAAAAAaAdL8WgIR0BQmdaUzKs/dX2UKGgGR0BxMAAAAAAAaAdNEwFoCEdAUKb17IDHO3V9lChoBkdAa8AAAAAAAGgHS95oCEdAULGlhw2l23V9lChoBkdAcMAAAAAAAGgHTQwBaAhHQFC+iTt9hJB1fZQoaAZHQGngAAAAAABoB0vPaAhHQFDIhlDneSB1fZQoaAZHQHVwAAAAAABoB01XAWgIR0BQ2dAcDKYBdX2UKGgGR0BsQAAAAAAAaAdL4mgIR0BQ5TFVDKHPdX2UKGgGR0Br4AAAAAAAaAdL32gIR0BQ8B4t6HCXdX2UKGgGR0BwsAAAAAAAaAdNCwFoCEdAUP4AQxveg3V9lChoBkdAbWAAAAAAAGgHS+toCEdAUQsSg5BC2XV9lChoBkdAeWAAAAAAAGgHTZYBaAhHQFEgS9/SYw91fZQoaAZHQGxgAAAAAABoB0vjaAhHQFEry4nWrfd1fZQoaAZHQGmgAAAAAABoB0vNaAhHQFE2QsPJ7sx1fZQoaAZHQG/gAAAAAABoB0v/aAhHQFFETviLl3h1fZQoaAZHQHUgAAAAAABoB01SAWgIR0BRWFxXGOuJdX2UKGgGR0BxkAAAAAAAaAdNGQFoCEdAUWaFxn3+M3V9lChoBkdAbwAAAAAAAGgHS/hoCEdAUXQl+mWMTHV9lChoBkdAbIAAAAAAAGgHS+RoCEdAUYOol2NedHV9lChoBkdAbSAAAAAAAGgHS+loCEdAUZE6p5u63HV9lChoBkdAbAAAAAAAAGgHS+BoCEdAUZw8SwnpjnV9lChoBkdAa+AAAAAAAGgHS99oCEdAUac/iYLLIXV9lChoBkdAa+AAAAAAAGgHS99oCEdAUbFCiRGMGXV9lChoBkdAayAAAAAAAGgHS9loCEdAUbvlU6xPf3V9lChoBkdAbgAAAAAAAGgHS/BoCEdAUcaoybhFVnV9lChoBkdAbcAAAAAAAGgHS+5oCEdAUdGMZP2wmnV9lChoBkdAbyAAAAAAAGgHS/loCEdAUdyv/zasZHV9lChoBkdAayAAAAAAAGgHS9loCEdAUeaW5Yoy9HV9lChoBkdAb4AAAAAAAGgHS/xoCEdAUfMla8pTdnV9lChoBkdAcLAAAAAAAGgHTQsBaAhHQFIAKZDzAet1fZQoaAZHQG2gAAAAAABoB0vtaAhHQFILqVQhwER1fZQoaAZHQHCwAAAAAABoB00LAWgIR0BSGOQhfShKdX2UKGgGR0Bu4AAAAAAAaAdL92gIR0BSJnoX9BKMdX2UKGgGR0Bu4AAAAAAAaAdL92gIR0BSM3kYGdI5dX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BSPkwN9YwJdX2UKGgGR0BpAAAAAAAAaAdLyGgIR0BSR6VD8cdYdX2UKGgGR0BugAAAAAAAaAdL9GgIR0BSUyr1dxACdX2UKGgGR0Bt4AAAAAAAaAdL72gIR0BSXgmzByjpdX2UKGgGR0BqQAAAAAAAaAdL0mgIR0BSaQj+rELqdX2UKGgGR0Bw0AAAAAAAaAdNDQFoCEdAUnam0mdAgXV9lChoBkdAceAAAAAAAGgHTR4BaAhHQFKFIBRyfcx1fZQoaAZHQG6gAAAAAABoB0v1aAhHQFKTB8hLXcx1fZQoaAZHQGqgAAAAAABoB0vVaAhHQFKfYHPeHi51fZQoaAZHQGzgAAAAAABoB0vnaAhHQFKql7tzCDV1fZQoaAZHQHMQAAAAAABoB00xAWgIR0BSuM8HObAldX2UKGgGR0ByUAAAAAAAaAdNJQFoCEdAUsfhFVktmXV9lChoBkdAcKAAAAAAAGgHTQoBaAhHQFLU84Pwuul1fZQoaAZHQGkgAAAAAABoB0vJaAhHQFLe3rleWv91fZQoaAZHQGwAAAAAAABoB0vgaAhHQFLoswtapxZ1fZQoaAZHQHIgAAAAAABoB00iAWgIR0BS9nww0wajdX2UKGgGR0BxYAAAAAAAaAdNFgFoCEdAUwR68g6ltXV9lChoBkdAa0AAAAAAAGgHS9poCEdAUxBZmqYJFHV9lChoBkdAbMAAAAAAAGgHS+ZoCEdAUxs8bJfYz3V9lChoBkdAa+AAAAAAAGgHS99oCEdAUyWGvfTCtXV9lChoBkdAceAAAAAAAGgHTR4BaAhHQFMyQ3xWkrR1fZQoaAZHQHCwAAAAAABoB00LAWgIR0BTPphfBvaUdX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAU0u0mdAgPnV9lChoBkdAeRAAAAAAAGgHTZEBaAhHQFNeBWxQizN1fZQoaAZHQGwgAAAAAABoB0vhaAhHQFNorS3LFGZ1fZQoaAZHQHOwAAAAAABoB007AWgIR0BTdsTWXkYGdX2UKGgGR0BvwAAAAAAAaAdL/mgIR0BTg1pPAO8TdX2UKGgGR0BrYAAAAAAAaAdL22gIR0BTjckMTewcdX2UKGgGR0BqYAAAAAAAaAdL02gIR0BTl8VpKzzFdX2UKGgGR0BtgAAAAAAAaAdL7GgIR0BTpYr4FiazdX2UKGgGR0Bo4AAAAAAAaAdLx2gIR0BTsK8cuJ1rdX2UKGgGR0BuIAAAAAAAaAdL8WgIR0BTvByCFsYVdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BTx3MQmNR4dX2UKGgGR0BygAAAAAAAaAdNKAFoCEdAU9YVwgkkbHV9lChoBkdAcLAAAAAAAGgHTQsBaAhHQFPkjkuHvc91fZQoaAZHQGwgAAAAAABoB0vhaAhHQFPwDxb0OEx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24975, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRcPJgvJj2C1U0H7l/5vdtnQCMA2luY5SKEGFlweXjgUniq4TWt7nETxB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBdqzh/0AdWJ1Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 100, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7168595fe280>", "add": "<function ReplayBuffer.add at 0x7168595fe310>", "sample": "<function ReplayBuffer.sample at 0x7168595fe3a0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7168595fe430>", "_maybe_cast_dtype": "<staticmethod object at 0x7168595e9e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7168595f9fc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVswMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoD4wMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJRoCSmMAV+UhZRoDowEZnVuY5RLhUMCAAGUjAN2YWyUhZQpdJRSlGgVTk5oHSlSlIWUdJRSlGgjaD19lH2UKGgYaDRoJowZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKH2UaCpOaCtOaCxoGWgtTmguaDBHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhFXZRoR32UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxiL2hvbWUvY2xvdWRjcmFmdHovYW5hY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtzQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9jbG91ZGNyYWZ0ei9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.5.0-41-generic-x86_64-with-glibc2.35 # 41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun 3 11:32:55 UTC 2", "Python": "3.9.19", "Stable-Baselines3": "2.3.2", "PyTorch": "2.4.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (76.8 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.7, "std_reward": 15.975293424535275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-24T14:29:38.687755"}