SultanR commited on
Commit
1de2f92
1 Parent(s): 6a382e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -180
README.md CHANGED
@@ -1,199 +1,99 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
 
 
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
 
 
 
 
 
158
 
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ tags:
7
+ - Tulu3
8
+ - Smollm
9
+ - SLMs
10
+ - Small
11
+ - Huggingface
12
+ - Allenai
13
+ - Reward Model
14
+ - RLVR
15
+ - RM
16
+ - Reward
17
+ base_model:
18
+ - SultanR/SmolTulu-1.7b-Instruct
19
+ datasets:
20
+ - allenai/tulu-3-sft-mixture
21
+ - allenai/llama-3.1-tulu-3-8b-preference-mixture
22
+ pipeline_tag: text-generation
23
  ---
24
 
25
+ # SmolLM2 1.7b Reward Model for RLVR Through Tulu 3!
26
 
27
+ ![SmolTulu Banner](smoltulubanner.png)
28
 
29
+ SmolTulu-1.7b-RM is the reward model used to initialize the value function for [SmolTulu-1.7b-Reinforced](https://huggingface.co/SultanR/SmolTulu-1.7b-Reinforced), which leverages [AllenAI's Tulu 3 post-training pipeline](https://arxiv.org/abs/2411.15124) for reinforcement learning with verifiable rewards (RLVR). This model was trained using the same preference datasets and methodology as outlined in the Tulu 3 paper, adapted for the smaller model size.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  ## Evaluation
32
 
33
+ Evaluation results comparing SmolTulu-1.7b-RM against the Tulu 3 8b reward model on standard reward model benchmarks:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ | Metric | SmolTulu-1.7b-RM | Tulu 3 8b RM |
36
+ |:-----------|:----------------:|:-------------:|
37
+ | RB Chat | *94.13* | **96.27** |
38
+ | RB Chat Hard | 43.64 | **55.92** |
39
+ | RB Safety | *75.54* | **84.05** |
40
+ | RB Reasoning | *68.01* | **76.50** |
41
+ | RB Average | *72.43* | **81.34** |
42
+ | UFB | *73.17* | **77.34** |
43
 
44
+ While the 1.7B reward model shows lower performance compared to the larger 8B model as expected, it still demonstrates strong capabilities across different evaluation categories, particularly in chat quality assessment.
45
 
46
+ ## Usage
47
 
48
+ The reward model can be used with the transformers library:
49
 
50
+ ```python
51
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
 
 
52
 
53
+ checkpoint = "SultanR/SmolTulu-1.7b-RM"
54
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
55
 
56
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
57
+ model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)
58
 
59
+ # Example of computing reward for a completion
60
+ def get_reward(prompt, completion):
61
+ inputs = tokenizer(prompt + completion, return_tensors="pt").to(device)
62
+ reward = model(**inputs).logits[0].item()
63
+ return reward
64
+ ```
65
 
66
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ The reward model was trained using:
69
+ - Learning rate: 3 × 10⁻⁶
70
+ - Gradient norm threshold: 1.0
71
+ - Learning rate schedule: Linear
72
+ - Batch size (effective): 256
73
+ - Max token length: 2,048
74
+ - Number of epochs: 1
75
+
76
+ ## Citation
77
+
78
+ ```
79
+ @misc{alrashed2024smoltuluhigherlearningrate,
80
+ title={SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs},
81
+ author={Sultan Alrashed},
82
+ year={2024},
83
+ eprint={2412.08347},
84
+ archivePrefix={arXiv},
85
+ primaryClass={cs.CL},
86
+ url={https://arxiv.org/abs/2412.08347},
87
+ }
88
+ ```
89
+
90
+ The training methodology follows the Tulu 3 paper:
91
+
92
+ ```
93
+ @article{lambert2024tulu3,
94
+ title={TÜLU 3: Pushing Frontiers in Open Language Model Post-Training},
95
+ author={Lambert, Nathan and Morrison, Jacob and Pyatkin, Valentina and others},
96
+ year={2024},
97
+ journal={arXiv preprint arXiv:2411.15124}
98
+ }
99
+ ```