Suchandra commited on
Commit
5c7283d
1 Parent(s): b9735c7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -2
README.md CHANGED
@@ -2,15 +2,27 @@
2
  language: bn
3
  datasets:
4
  - wikiann
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
  <h1>Bengali Named Entity Recognition</h1>
8
  Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language.
9
 
10
 
11
- ## Label and ID Mapping
12
 
13
- | Label ID | Label |
14
  | -------- | ----- |
15
  |0 | O |
16
  | 1 | B-PER |
@@ -24,6 +36,21 @@ Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER o
24
 
25
  | Name | Overall F1 | LOC F1 | ORG F1 | PER F1 |
26
  | ---- | -------- | ----- | ---- | ---- |
 
27
  | Validation set | 0.970187 | 0.969212 | 0.956831 | 0.982079 |
28
  | Test set | 0.9673011 | 0.967120 | 0.963614 | 0.970938 |
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  language: bn
3
  datasets:
4
  - wikiann
5
+ examples:
6
+ widget:
7
+ - text: "মারভিন দি মারসিয়ান"
8
+ example_title: "Sentence_1"
9
+ - text: "লিওনার্দো দা ভিঞ্চি"
10
+ example_title: "Sentence_2"
11
+ - text: "বসনিয়া ও হার্জেগোভিনা"
12
+ example_title: "Sentence_3"
13
+ - text: "সাউথ ইস্ট ইউনিভার্সিটি"
14
+ example_title: "Sentence_4"
15
+ - text: "মানিক বন্দ্যোপাধ্যায় লেখক"
16
+ example_title: "Sentence_5"
17
  ---
18
 
19
  <h1>Bengali Named Entity Recognition</h1>
20
  Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language.
21
 
22
 
23
+ ## Label ID and its corresponding label name
24
 
25
+ | Label ID | Label Name|
26
  | -------- | ----- |
27
  |0 | O |
28
  | 1 | B-PER |
 
36
 
37
  | Name | Overall F1 | LOC F1 | ORG F1 | PER F1 |
38
  | ---- | -------- | ----- | ---- | ---- |
39
+ | Train set | 0.997927 | 0.998246 | 0.996613 | 0.998769 |
40
  | Validation set | 0.970187 | 0.969212 | 0.956831 | 0.982079 |
41
  | Test set | 0.9673011 | 0.967120 | 0.963614 | 0.970938 |
42
 
43
+ Example
44
+ ```py
45
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
46
+ from transformers import pipeline
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("Suchandra/bengali_language_NER")
49
+ model = AutoModelForTokenClassification.from_pretrained("Suchandra/bengali_language_NER")
50
+
51
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
52
+ example = "মারভিন দি মারসিয়ান"
53
+
54
+ ner_results = nlp(example)
55
+ ner_results
56
+ ```