Update README.md
Browse files
README.md
CHANGED
@@ -2,15 +2,27 @@
|
|
2 |
language: bn
|
3 |
datasets:
|
4 |
- wikiann
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
<h1>Bengali Named Entity Recognition</h1>
|
8 |
Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language.
|
9 |
|
10 |
|
11 |
-
## Label and
|
12 |
|
13 |
-
| Label ID | Label |
|
14 |
| -------- | ----- |
|
15 |
|0 | O |
|
16 |
| 1 | B-PER |
|
@@ -24,6 +36,21 @@ Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER o
|
|
24 |
|
25 |
| Name | Overall F1 | LOC F1 | ORG F1 | PER F1 |
|
26 |
| ---- | -------- | ----- | ---- | ---- |
|
|
|
27 |
| Validation set | 0.970187 | 0.969212 | 0.956831 | 0.982079 |
|
28 |
| Test set | 0.9673011 | 0.967120 | 0.963614 | 0.970938 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
language: bn
|
3 |
datasets:
|
4 |
- wikiann
|
5 |
+
examples:
|
6 |
+
widget:
|
7 |
+
- text: "মারভিন দি মারসিয়ান"
|
8 |
+
example_title: "Sentence_1"
|
9 |
+
- text: "লিওনার্দো দা ভিঞ্চি"
|
10 |
+
example_title: "Sentence_2"
|
11 |
+
- text: "বসনিয়া ও হার্জেগোভিনা"
|
12 |
+
example_title: "Sentence_3"
|
13 |
+
- text: "সাউথ ইস্ট ইউনিভার্সিটি"
|
14 |
+
example_title: "Sentence_4"
|
15 |
+
- text: "মানিক বন্দ্যোপাধ্যায় লেখক"
|
16 |
+
example_title: "Sentence_5"
|
17 |
---
|
18 |
|
19 |
<h1>Bengali Named Entity Recognition</h1>
|
20 |
Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language.
|
21 |
|
22 |
|
23 |
+
## Label ID and its corresponding label name
|
24 |
|
25 |
+
| Label ID | Label Name|
|
26 |
| -------- | ----- |
|
27 |
|0 | O |
|
28 |
| 1 | B-PER |
|
|
|
36 |
|
37 |
| Name | Overall F1 | LOC F1 | ORG F1 | PER F1 |
|
38 |
| ---- | -------- | ----- | ---- | ---- |
|
39 |
+
| Train set | 0.997927 | 0.998246 | 0.996613 | 0.998769 |
|
40 |
| Validation set | 0.970187 | 0.969212 | 0.956831 | 0.982079 |
|
41 |
| Test set | 0.9673011 | 0.967120 | 0.963614 | 0.970938 |
|
42 |
|
43 |
+
Example
|
44 |
+
```py
|
45 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
46 |
+
from transformers import pipeline
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("Suchandra/bengali_language_NER")
|
49 |
+
model = AutoModelForTokenClassification.from_pretrained("Suchandra/bengali_language_NER")
|
50 |
+
|
51 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
52 |
+
example = "মারভিন দি মারসিয়ান"
|
53 |
+
|
54 |
+
ner_results = nlp(example)
|
55 |
+
ner_results
|
56 |
+
```
|