StupidGame's picture
Upload 1941 files
baa8e90
from torch import Tensor
import torch
from .control import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion
from .logger import logger
WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
class DefaultWeights:
@classmethod
def INPUT_TYPES(s):
return {
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self):
weights = ControlWeights.default()
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class ScaledSoftMaskedUniversalWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK", ),
"min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
"max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
#"lock_min": ("BOOLEAN", {"default": False}, ),
#"lock_max": ("BOOLEAN", {"default": False}, ),
},
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False):
# normalize mask
mask = mask.clone()
x_min = 0.0 if lock_min else mask.min()
x_max = 1.0 if lock_max else mask.max()
if x_min == x_max:
mask = torch.ones_like(mask) * max_base_multiplier
else:
mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier)
weights = ControlWeights.universal_mask(weight_mask=mask)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class ScaledSoftUniversalWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights"
def load_weights(self, base_multiplier, flip_weights):
weights = ControlWeights.universal(base_multiplier=base_multiplier, flip_weights=flip_weights)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftControlNetWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/ControlNet"
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights):
weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12]
weights = ControlWeights.controlnet(weights, flip_weights=flip_weights)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class CustomControlNetWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/ControlNet"
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights):
weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12]
weights = ControlWeights.controlnet(weights, flip_weights=flip_weights)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftT2IAdapterWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/T2IAdapter"
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights):
weights = [weight_00, weight_01, weight_02, weight_03]
weights = get_properly_arranged_t2i_weights(weights)
weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class CustomT2IAdapterWeights:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = WEIGHTS_RETURN_NAMES
FUNCTION = "load_weights"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/weights/T2IAdapter"
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights):
weights = [weight_00, weight_01, weight_02, weight_03]
weights = get_properly_arranged_t2i_weights(weights)
weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))