| nproc_per_node=8 | |
| # losses: plugin/loss.py | |
| # 8*40G | |
| MAX_PIXELS=1003520 \ | |
| NPROC_PER_NODE=$nproc_per_node \ | |
| swift sft \ | |
| --model iic/gme-Qwen2-VL-2B-Instruct \ | |
| --train_type lora \ | |
| --dataset 'swift/TextCaps:emb' \ | |
| --torch_dtype bfloat16 \ | |
| --num_train_epochs 1 \ | |
| --per_device_train_batch_size 2 \ | |
| --per_device_eval_batch_size 2 \ | |
| --gradient_accumulation_steps $(expr 64 / $nproc_per_node) \ | |
| --eval_steps 100 \ | |
| --save_steps 100 \ | |
| --eval_strategy steps \ | |
| --save_total_limit 2 \ | |
| --logging_steps 5 \ | |
| --output_dir output \ | |
| --lazy_tokenize true \ | |
| --warmup_ratio 0.05 \ | |
| --learning_rate 5e-6 \ | |
| --deepspeed zero3 \ | |
| --dataloader_num_workers 4 \ | |
| --task_type embedding \ | |
| --loss_type infonce \ | |
| --dataloader_drop_last true | |