|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
import os |
|
|
import re |
|
|
import unittest |
|
|
from functools import lru_cache |
|
|
|
|
|
from transformers import CodeGenTokenizer, CodeGenTokenizerFast |
|
|
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES |
|
|
from transformers.testing_utils import require_tokenizers, slow |
|
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible |
|
|
|
|
|
|
|
|
@require_tokenizers |
|
|
class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase): |
|
|
from_pretrained_id = "Salesforce/codegen-350M-mono" |
|
|
tokenizer_class = CodeGenTokenizer |
|
|
rust_tokenizer_class = CodeGenTokenizerFast |
|
|
test_rust_tokenizer = True |
|
|
from_pretrained_kwargs = {"add_prefix_space": True} |
|
|
test_seq2seq = False |
|
|
|
|
|
@classmethod |
|
|
def setUpClass(cls): |
|
|
super().setUpClass() |
|
|
|
|
|
|
|
|
vocab = [ |
|
|
"l", |
|
|
"o", |
|
|
"w", |
|
|
"e", |
|
|
"r", |
|
|
"s", |
|
|
"t", |
|
|
"i", |
|
|
"d", |
|
|
"n", |
|
|
"\u0120", |
|
|
"\u0120l", |
|
|
"\u0120n", |
|
|
"\u0120lo", |
|
|
"\u0120low", |
|
|
"er", |
|
|
"\u0120lowest", |
|
|
"\u0120newer", |
|
|
"\u0120wider", |
|
|
"<unk>", |
|
|
"<|endoftext|>", |
|
|
] |
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab)))) |
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] |
|
|
cls.special_tokens_map = {"unk_token": "<unk>"} |
|
|
|
|
|
cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) |
|
|
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) |
|
|
with open(cls.vocab_file, "w", encoding="utf-8") as fp: |
|
|
fp.write(json.dumps(vocab_tokens) + "\n") |
|
|
with open(cls.merges_file, "w", encoding="utf-8") as fp: |
|
|
fp.write("\n".join(merges)) |
|
|
|
|
|
@classmethod |
|
|
@use_cache_if_possible |
|
|
@lru_cache(maxsize=64) |
|
|
def get_tokenizer(cls, pretrained_name=None, **kwargs): |
|
|
kwargs.update(cls.special_tokens_map) |
|
|
pretrained_name = pretrained_name or cls.tmpdirname |
|
|
return CodeGenTokenizer.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
@classmethod |
|
|
@use_cache_if_possible |
|
|
@lru_cache(maxsize=64) |
|
|
def get_rust_tokenizer(cls, pretrained_name=None, **kwargs): |
|
|
kwargs.update(cls.special_tokens_map) |
|
|
pretrained_name = pretrained_name or cls.tmpdirname |
|
|
return CodeGenTokenizerFast.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
def get_input_output_texts(self, tokenizer): |
|
|
input_text = "lower newer" |
|
|
output_text = "lower newer" |
|
|
return input_text, output_text |
|
|
|
|
|
def test_full_tokenizer(self): |
|
|
tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) |
|
|
text = "lower newer" |
|
|
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] |
|
|
tokens = tokenizer.tokenize(text, add_prefix_space=True) |
|
|
self.assertListEqual(tokens, bpe_tokens) |
|
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token] |
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] |
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) |
|
|
|
|
|
def test_rust_and_python_full_tokenizers(self): |
|
|
if not self.test_rust_tokenizer: |
|
|
self.skipTest(reason="test_rust_tokenizer is set to False") |
|
|
|
|
|
tokenizer = self.get_tokenizer() |
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) |
|
|
|
|
|
sequence = "lower newer" |
|
|
|
|
|
|
|
|
tokens = tokenizer.tokenize(sequence, add_prefix_space=True) |
|
|
rust_tokens = rust_tokenizer.tokenize(sequence) |
|
|
self.assertListEqual(tokens, rust_tokens) |
|
|
|
|
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) |
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) |
|
|
self.assertListEqual(ids, rust_ids) |
|
|
|
|
|
|
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) |
|
|
ids = tokenizer.encode(sequence, add_prefix_space=True) |
|
|
rust_ids = rust_tokenizer.encode(sequence) |
|
|
self.assertListEqual(ids, rust_ids) |
|
|
|
|
|
|
|
|
input_tokens = tokens + [rust_tokenizer.unk_token] |
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] |
|
|
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) |
|
|
|
|
|
@unittest.skip |
|
|
def test_pretokenized_inputs(self, *args, **kwargs): |
|
|
|
|
|
|
|
|
pass |
|
|
|
|
|
def test_padding(self, max_length=15): |
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
|
tokenizer_r = self.get_rust_tokenizer(pretrained_name, **kwargs) |
|
|
|
|
|
|
|
|
s = "This is a simple input" |
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"] |
|
|
p = ("This is a simple input", "This is a pair") |
|
|
p2 = [ |
|
|
("This is a simple input 1", "This is a simple input 2"), |
|
|
("This is a simple pair 1", "This is a simple pair 2"), |
|
|
] |
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") |
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") |
|
|
|
|
|
|
|
|
self.assertRaises( |
|
|
ValueError, |
|
|
tokenizer_r.batch_encode_plus, |
|
|
s2, |
|
|
max_length=max_length, |
|
|
padding="max_length", |
|
|
) |
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") |
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") |
|
|
|
|
|
|
|
|
self.assertRaises( |
|
|
ValueError, |
|
|
tokenizer_r.batch_encode_plus, |
|
|
p2, |
|
|
max_length=max_length, |
|
|
padding="max_length", |
|
|
) |
|
|
|
|
|
def test_padding_if_pad_token_set_slow(self): |
|
|
tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") |
|
|
|
|
|
|
|
|
s = "This is a simple input" |
|
|
s2 = ["This is a simple input looooooooong", "This is a simple input"] |
|
|
p = ("This is a simple input", "This is a pair") |
|
|
p2 = [ |
|
|
("This is a simple input loooooong", "This is a simple input"), |
|
|
("This is a simple pair loooooong", "This is a simple pair"), |
|
|
] |
|
|
|
|
|
pad_token_id = tokenizer.pad_token_id |
|
|
|
|
|
out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np") |
|
|
out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np") |
|
|
out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np") |
|
|
out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np") |
|
|
|
|
|
|
|
|
|
|
|
self.assertEqual(out_s["input_ids"].shape[-1], 30) |
|
|
self.assertTrue(pad_token_id in out_s["input_ids"]) |
|
|
self.assertTrue(0 in out_s["attention_mask"]) |
|
|
|
|
|
|
|
|
|
|
|
self.assertEqual(out_s2["input_ids"].shape[-1], 33) |
|
|
|
|
|
self.assertFalse(pad_token_id in out_s2["input_ids"][0]) |
|
|
self.assertFalse(0 in out_s2["attention_mask"][0]) |
|
|
|
|
|
self.assertTrue(pad_token_id in out_s2["input_ids"][1]) |
|
|
self.assertTrue(0 in out_s2["attention_mask"][1]) |
|
|
|
|
|
|
|
|
|
|
|
self.assertEqual(out_p["input_ids"].shape[-1], 60) |
|
|
self.assertTrue(pad_token_id in out_p["input_ids"]) |
|
|
self.assertTrue(0 in out_p["attention_mask"]) |
|
|
|
|
|
|
|
|
|
|
|
self.assertEqual(out_p2["input_ids"].shape[-1], 52) |
|
|
|
|
|
self.assertFalse(pad_token_id in out_p2["input_ids"][0]) |
|
|
self.assertFalse(0 in out_p2["attention_mask"][0]) |
|
|
|
|
|
self.assertTrue(pad_token_id in out_p2["input_ids"][1]) |
|
|
self.assertTrue(0 in out_p2["attention_mask"][1]) |
|
|
|
|
|
def test_add_bos_token_slow(self): |
|
|
bos_token = "$$$" |
|
|
tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True) |
|
|
|
|
|
s = "This is a simple input" |
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"] |
|
|
|
|
|
bos_token_id = tokenizer.bos_token_id |
|
|
|
|
|
out_s = tokenizer(s) |
|
|
out_s2 = tokenizer(s2) |
|
|
|
|
|
self.assertEqual(out_s.input_ids[0], bos_token_id) |
|
|
self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids)) |
|
|
|
|
|
decode_s = tokenizer.decode(out_s.input_ids) |
|
|
decode_s2 = tokenizer.batch_decode(out_s2.input_ids) |
|
|
|
|
|
self.assertTrue(decode_s.startswith(bos_token)) |
|
|
self.assertTrue(all(d.startswith(bos_token) for d in decode_s2)) |
|
|
|
|
|
@slow |
|
|
def test_truncation(self): |
|
|
tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") |
|
|
|
|
|
text = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" |
|
|
expected_truncated_text = "\nif len_a > len_b:\n result = a\nelse:\n result = b" |
|
|
|
|
|
input_ids = tokenizer.encode(text) |
|
|
truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"] |
|
|
decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern) |
|
|
self.assertEqual(decoded_text, expected_truncated_text) |
|
|
|
|
|
|
|
|
|
|
|
@unittest.skip(reason="tokenizer has no padding token") |
|
|
def test_padding_different_model_input_name(self): |
|
|
pass |
|
|
|
|
|
@slow |
|
|
def test_tokenizer_integration(self): |
|
|
|
|
|
|
|
|
sequences = [ |
|
|
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " |
|
|
"general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural " |
|
|
"Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained " |
|
|
"models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.", |
|
|
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " |
|
|
"conditioning on both left and right context in all layers.", |
|
|
"The quick brown fox jumps over the lazy dog.", |
|
|
] |
|
|
|
|
|
tokenizer_classes = [self.tokenizer_class] |
|
|
if self.test_rust_tokenizer: |
|
|
tokenizer_classes.append(self.rust_tokenizer_class) |
|
|
|
|
|
|
|
|
for tokenizer_class in tokenizer_classes: |
|
|
tokenizer = tokenizer_class.from_pretrained("Salesforce/codegen-350M-mono") |
|
|
|
|
|
encoding = tokenizer(sequences) |
|
|
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] |
|
|
|
|
|
|
|
|
expected_encoding = {'input_ids': [[41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13], [13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13], [464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} |
|
|
|
|
|
|
|
|
encoding_data = encoding.data |
|
|
self.assertDictEqual(encoding_data, expected_encoding) |
|
|
|
|
|
for expected, decoded in zip(sequences, decoded_sequences): |
|
|
self.assertEqual(expected, decoded) |
|
|
|
|
|
|
|
|
for tokenizer_class in tokenizer_classes: |
|
|
tokenizer = tokenizer_class.from_pretrained("Salesforce/codegen-350M-mono", return_token_type_ids=True) |
|
|
|
|
|
encoding = tokenizer(sequences) |
|
|
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] |
|
|
|
|
|
|
|
|
expected_encoding = {'input_ids': [[41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13], [13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13], [464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} |
|
|
|
|
|
|
|
|
encoding_data = encoding.data |
|
|
self.assertDictEqual(encoding_data, expected_encoding) |
|
|
|
|
|
for expected, decoded in zip(sequences, decoded_sequences): |
|
|
self.assertEqual(expected, decoded) |
|
|
|