|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Testing suite for the PyTorch Bros model.""" |
|
|
|
|
|
import copy |
|
|
import unittest |
|
|
|
|
|
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device |
|
|
from transformers.utils import is_torch_available |
|
|
|
|
|
from ...test_configuration_common import ConfigTester |
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
|
|
|
if is_torch_available(): |
|
|
import torch |
|
|
|
|
|
from transformers import ( |
|
|
BrosConfig, |
|
|
BrosForTokenClassification, |
|
|
BrosModel, |
|
|
BrosSpadeEEForTokenClassification, |
|
|
BrosSpadeELForTokenClassification, |
|
|
) |
|
|
|
|
|
|
|
|
class BrosModelTester: |
|
|
def __init__( |
|
|
self, |
|
|
parent, |
|
|
batch_size=13, |
|
|
seq_length=7, |
|
|
is_training=True, |
|
|
use_input_mask=True, |
|
|
use_token_type_ids=True, |
|
|
use_bbox_first_token_mask=True, |
|
|
use_labels=True, |
|
|
vocab_size=99, |
|
|
hidden_size=64, |
|
|
num_hidden_layers=5, |
|
|
num_attention_heads=4, |
|
|
intermediate_size=37, |
|
|
hidden_act="gelu", |
|
|
hidden_dropout_prob=0.1, |
|
|
attention_probs_dropout_prob=0.1, |
|
|
max_position_embeddings=512, |
|
|
type_vocab_size=16, |
|
|
type_sequence_label_size=2, |
|
|
initializer_range=0.02, |
|
|
num_labels=3, |
|
|
num_choices=4, |
|
|
scope=None, |
|
|
): |
|
|
self.parent = parent |
|
|
self.batch_size = batch_size |
|
|
self.seq_length = seq_length |
|
|
self.is_training = is_training |
|
|
self.use_input_mask = use_input_mask |
|
|
self.use_bbox_first_token_mask = use_bbox_first_token_mask |
|
|
self.use_token_type_ids = use_token_type_ids |
|
|
self.use_labels = use_labels |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.intermediate_size = intermediate_size |
|
|
self.hidden_act = hidden_act |
|
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.type_vocab_size = type_vocab_size |
|
|
self.type_sequence_label_size = type_sequence_label_size |
|
|
self.initializer_range = initializer_range |
|
|
self.num_labels = num_labels |
|
|
|
|
|
def prepare_config_and_inputs(self): |
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
|
|
bbox = ids_tensor([self.batch_size, self.seq_length, 8], 1) |
|
|
|
|
|
for i in range(bbox.shape[0]): |
|
|
for j in range(bbox.shape[1]): |
|
|
if bbox[i, j, 3] < bbox[i, j, 1]: |
|
|
t = bbox[i, j, 3] |
|
|
bbox[i, j, 3] = bbox[i, j, 1] |
|
|
bbox[i, j, 1] = t |
|
|
if bbox[i, j, 2] < bbox[i, j, 0]: |
|
|
t = bbox[i, j, 2] |
|
|
bbox[i, j, 2] = bbox[i, j, 0] |
|
|
bbox[i, j, 0] = t |
|
|
|
|
|
input_mask = None |
|
|
if self.use_input_mask: |
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
|
|
bbox_first_token_mask = None |
|
|
if self.use_bbox_first_token_mask: |
|
|
bbox_first_token_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.bool).to(torch_device) |
|
|
|
|
|
token_type_ids = None |
|
|
if self.use_token_type_ids: |
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
|
|
token_labels = None |
|
|
if self.use_labels: |
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
|
initial_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
|
subsequent_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
|
|
|
|
config = self.get_config() |
|
|
|
|
|
return ( |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
) |
|
|
|
|
|
def get_config(self): |
|
|
return BrosConfig( |
|
|
vocab_size=self.vocab_size, |
|
|
hidden_size=self.hidden_size, |
|
|
num_hidden_layers=self.num_hidden_layers, |
|
|
num_attention_heads=self.num_attention_heads, |
|
|
intermediate_size=self.intermediate_size, |
|
|
hidden_act=self.hidden_act, |
|
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
|
max_position_embeddings=self.max_position_embeddings, |
|
|
type_vocab_size=self.type_vocab_size, |
|
|
is_decoder=False, |
|
|
initializer_range=self.initializer_range, |
|
|
) |
|
|
|
|
|
def create_and_check_model( |
|
|
self, |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
): |
|
|
model = BrosModel(config=config) |
|
|
model.to(torch_device) |
|
|
model.eval() |
|
|
result = model(input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids) |
|
|
result = model(input_ids, bbox=bbox, token_type_ids=token_type_ids) |
|
|
result = model(input_ids, bbox=bbox) |
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
|
|
def create_and_check_for_token_classification( |
|
|
self, |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
): |
|
|
config.num_labels = self.num_labels |
|
|
model = BrosForTokenClassification(config=config) |
|
|
model.to(torch_device) |
|
|
model.eval() |
|
|
result = model( |
|
|
input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels |
|
|
) |
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
|
|
def create_and_check_for_spade_ee_token_classification( |
|
|
self, |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
): |
|
|
config.num_labels = self.num_labels |
|
|
model = BrosSpadeEEForTokenClassification(config=config) |
|
|
model.to(torch_device) |
|
|
model.eval() |
|
|
result = model( |
|
|
input_ids, |
|
|
bbox=bbox, |
|
|
attention_mask=input_mask, |
|
|
bbox_first_token_mask=bbox_first_token_mask, |
|
|
token_type_ids=token_type_ids, |
|
|
initial_token_labels=token_labels, |
|
|
subsequent_token_labels=token_labels, |
|
|
) |
|
|
self.parent.assertEqual(result.initial_token_logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
self.parent.assertEqual( |
|
|
result.subsequent_token_logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1) |
|
|
) |
|
|
|
|
|
def create_and_check_for_spade_el_token_classification( |
|
|
self, |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
): |
|
|
config.num_labels = self.num_labels |
|
|
model = BrosSpadeELForTokenClassification(config=config) |
|
|
model.to(torch_device) |
|
|
model.eval() |
|
|
result = model( |
|
|
input_ids, |
|
|
bbox=bbox, |
|
|
attention_mask=input_mask, |
|
|
bbox_first_token_mask=bbox_first_token_mask, |
|
|
token_type_ids=token_type_ids, |
|
|
labels=token_labels, |
|
|
) |
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1)) |
|
|
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
( |
|
|
config, |
|
|
input_ids, |
|
|
bbox, |
|
|
token_type_ids, |
|
|
input_mask, |
|
|
bbox_first_token_mask, |
|
|
token_labels, |
|
|
initial_token_labels, |
|
|
subsequent_token_labels, |
|
|
) = config_and_inputs |
|
|
inputs_dict = { |
|
|
"input_ids": input_ids, |
|
|
"bbox": bbox, |
|
|
"token_type_ids": token_type_ids, |
|
|
"attention_mask": input_mask, |
|
|
} |
|
|
return config, inputs_dict |
|
|
|
|
|
|
|
|
@require_torch |
|
|
class BrosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
|
test_pruning = False |
|
|
test_torchscript = False |
|
|
test_mismatched_shapes = False |
|
|
|
|
|
all_model_classes = ( |
|
|
( |
|
|
BrosForTokenClassification, |
|
|
BrosSpadeEEForTokenClassification, |
|
|
BrosSpadeELForTokenClassification, |
|
|
BrosModel, |
|
|
) |
|
|
if is_torch_available() |
|
|
else () |
|
|
) |
|
|
pipeline_model_mapping = ( |
|
|
{"feature-extraction": BrosModel, "token-classification": BrosForTokenClassification} |
|
|
if is_torch_available() |
|
|
else {} |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def is_pipeline_test_to_skip( |
|
|
self, |
|
|
pipeline_test_case_name, |
|
|
config_class, |
|
|
model_architecture, |
|
|
tokenizer_name, |
|
|
image_processor_name, |
|
|
feature_extractor_name, |
|
|
processor_name, |
|
|
): |
|
|
return True |
|
|
|
|
|
def setUp(self): |
|
|
self.model_tester = BrosModelTester(self) |
|
|
self.config_tester = ConfigTester(self, config_class=BrosConfig, hidden_size=37) |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
|
inputs_dict = copy.deepcopy(inputs_dict) |
|
|
|
|
|
if return_labels: |
|
|
if model_class.__name__ in ["BrosForTokenClassification", "BrosSpadeELForTokenClassification"]: |
|
|
inputs_dict["labels"] = torch.zeros( |
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), |
|
|
dtype=torch.long, |
|
|
device=torch_device, |
|
|
) |
|
|
inputs_dict["bbox_first_token_mask"] = torch.ones( |
|
|
[self.model_tester.batch_size, self.model_tester.seq_length], |
|
|
dtype=torch.bool, |
|
|
device=torch_device, |
|
|
) |
|
|
elif model_class.__name__ in ["BrosSpadeEEForTokenClassification"]: |
|
|
inputs_dict["initial_token_labels"] = torch.zeros( |
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), |
|
|
dtype=torch.long, |
|
|
device=torch_device, |
|
|
) |
|
|
inputs_dict["subsequent_token_labels"] = torch.zeros( |
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), |
|
|
dtype=torch.long, |
|
|
device=torch_device, |
|
|
) |
|
|
inputs_dict["bbox_first_token_mask"] = torch.ones( |
|
|
[self.model_tester.batch_size, self.model_tester.seq_length], |
|
|
dtype=torch.bool, |
|
|
device=torch_device, |
|
|
) |
|
|
|
|
|
return inputs_dict |
|
|
|
|
|
def test_config(self): |
|
|
self.config_tester.run_common_tests() |
|
|
|
|
|
def test_model(self): |
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
|
|
@require_torch_multi_gpu |
|
|
def test_multi_gpu_data_parallel_forward(self): |
|
|
super().test_multi_gpu_data_parallel_forward() |
|
|
|
|
|
def test_model_various_embeddings(self): |
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
|
for type in ["absolute", "relative_key", "relative_key_query"]: |
|
|
config_and_inputs[0].position_embedding_type = type |
|
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
|
|
def test_for_token_classification(self): |
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) |
|
|
|
|
|
def test_for_spade_ee_token_classification(self): |
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
|
self.model_tester.create_and_check_for_spade_ee_token_classification(*config_and_inputs) |
|
|
|
|
|
def test_for_spade_el_token_classification(self): |
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
|
self.model_tester.create_and_check_for_spade_el_token_classification(*config_and_inputs) |
|
|
|
|
|
@slow |
|
|
def test_model_from_pretrained(self): |
|
|
model_name = "jinho8345/bros-base-uncased" |
|
|
model = BrosModel.from_pretrained(model_name) |
|
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
|
def prepare_bros_batch_inputs(): |
|
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) |
|
|
|
|
|
bbox = torch.tensor( |
|
|
[ |
|
|
[ |
|
|
[0.0000, 0.0000, 0.0000, 0.0000], |
|
|
[0.5223, 0.5590, 0.5787, 0.5720], |
|
|
[0.5853, 0.5590, 0.6864, 0.5720], |
|
|
[0.5853, 0.5590, 0.6864, 0.5720], |
|
|
[0.1234, 0.5700, 0.2192, 0.5840], |
|
|
[0.2231, 0.5680, 0.2782, 0.5780], |
|
|
[0.2874, 0.5670, 0.3333, 0.5780], |
|
|
[0.3425, 0.5640, 0.4344, 0.5750], |
|
|
[0.0866, 0.7770, 0.1181, 0.7870], |
|
|
[0.1168, 0.7770, 0.1522, 0.7850], |
|
|
[0.1535, 0.7750, 0.1864, 0.7850], |
|
|
[0.1890, 0.7750, 0.2572, 0.7850], |
|
|
[1.0000, 1.0000, 1.0000, 1.0000], |
|
|
], |
|
|
[ |
|
|
[0.0000, 0.0000, 0.0000, 0.0000], |
|
|
[0.4396, 0.6720, 0.4659, 0.6850], |
|
|
[0.4698, 0.6720, 0.4843, 0.6850], |
|
|
[0.1575, 0.6870, 0.2021, 0.6980], |
|
|
[0.2047, 0.6870, 0.2730, 0.7000], |
|
|
[0.1299, 0.7010, 0.1430, 0.7140], |
|
|
[0.1299, 0.7010, 0.1430, 0.7140], |
|
|
[0.1562, 0.7010, 0.2441, 0.7120], |
|
|
[0.1562, 0.7010, 0.2441, 0.7120], |
|
|
[0.2454, 0.7010, 0.3150, 0.7120], |
|
|
[0.3176, 0.7010, 0.3320, 0.7110], |
|
|
[0.3333, 0.7000, 0.4029, 0.7140], |
|
|
[1.0000, 1.0000, 1.0000, 1.0000], |
|
|
], |
|
|
] |
|
|
) |
|
|
input_ids = torch.tensor( |
|
|
[ |
|
|
[101, 1055, 8910, 1012, 5719, 3296, 5366, 3378, 2146, 2846, 10807, 13494, 102], |
|
|
[101, 2112, 1997, 3671, 6364, 1019, 1012, 5057, 1011, 4646, 2030, 2974, 102], |
|
|
] |
|
|
) |
|
|
|
|
|
return input_ids, bbox, attention_mask |
|
|
|
|
|
|
|
|
@require_torch |
|
|
class BrosModelIntegrationTest(unittest.TestCase): |
|
|
@slow |
|
|
def test_inference_no_head(self): |
|
|
model = BrosModel.from_pretrained("jinho8345/bros-base-uncased").to(torch_device) |
|
|
|
|
|
input_ids, bbox, attention_mask = prepare_bros_batch_inputs() |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model( |
|
|
input_ids.to(torch_device), |
|
|
bbox.to(torch_device), |
|
|
attention_mask=attention_mask.to(torch_device), |
|
|
return_dict=True, |
|
|
) |
|
|
|
|
|
|
|
|
expected_shape = torch.Size((2, 13, 768)) |
|
|
self.assertEqual(outputs.last_hidden_state.shape, expected_shape) |
|
|
|
|
|
expected_slice = torch.tensor( |
|
|
[[-0.3074, 0.1363, 0.3143], [0.0925, -0.1155, 0.1050], [0.0221, 0.0003, 0.1285]] |
|
|
).to(torch_device) |
|
|
torch.set_printoptions(sci_mode=False) |
|
|
|
|
|
torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) |
|
|
|