|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from transformers.image_utils import PILImageResampling |
|
|
from transformers.testing_utils import require_torch, require_vision |
|
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin |
|
|
|
|
|
|
|
|
if is_vision_available(): |
|
|
from PIL import Image |
|
|
|
|
|
from transformers import AriaImageProcessor |
|
|
|
|
|
|
|
|
if is_torch_available(): |
|
|
import torch |
|
|
|
|
|
|
|
|
class AriaImageProcessingTester: |
|
|
def __init__( |
|
|
self, |
|
|
parent, |
|
|
batch_size=7, |
|
|
num_channels=3, |
|
|
num_images=1, |
|
|
min_resolution=30, |
|
|
max_resolution=40, |
|
|
size=None, |
|
|
max_image_size=980, |
|
|
min_image_size=336, |
|
|
split_resolutions=None, |
|
|
split_image=True, |
|
|
do_normalize=True, |
|
|
image_mean=[0.5, 0.5, 0.5], |
|
|
image_std=[0.5, 0.5, 0.5], |
|
|
do_convert_rgb=True, |
|
|
resample=PILImageResampling.BICUBIC, |
|
|
): |
|
|
self.size = size if size is not None else {"longest_edge": max_resolution} |
|
|
self.parent = parent |
|
|
self.batch_size = batch_size |
|
|
self.num_channels = num_channels |
|
|
self.num_images = num_images |
|
|
self.min_resolution = min_resolution |
|
|
self.max_resolution = max_resolution |
|
|
self.resample = resample |
|
|
self.max_image_size = max_image_size |
|
|
self.min_image_size = min_image_size |
|
|
self.split_resolutions = split_resolutions if split_resolutions is not None else [[980, 980]] |
|
|
self.split_image = split_image |
|
|
self.do_normalize = do_normalize |
|
|
self.image_mean = image_mean |
|
|
self.image_std = image_std |
|
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
|
|
def prepare_image_processor_dict(self): |
|
|
return { |
|
|
"image_mean": self.image_mean, |
|
|
"image_std": self.image_std, |
|
|
"max_image_size": self.max_image_size, |
|
|
"min_image_size": self.min_image_size, |
|
|
"split_resolutions": self.split_resolutions, |
|
|
"split_image": self.split_image, |
|
|
"do_convert_rgb": self.do_convert_rgb, |
|
|
"do_normalize": self.do_normalize, |
|
|
"resample": self.resample, |
|
|
} |
|
|
|
|
|
def get_expected_values(self, image_inputs, batched=False): |
|
|
""" |
|
|
This function computes the expected height and width when providing images to AriaImageProcessor, |
|
|
assuming do_resize is set to True. The expected size in that case the max image size. |
|
|
""" |
|
|
return self.max_image_size, self.max_image_size |
|
|
|
|
|
def expected_output_image_shape(self, images): |
|
|
height, width = self.get_expected_values(images, batched=True) |
|
|
return self.num_channels, height, width |
|
|
|
|
|
def prepare_image_inputs( |
|
|
self, |
|
|
batch_size=None, |
|
|
min_resolution=None, |
|
|
max_resolution=None, |
|
|
num_channels=None, |
|
|
num_images=None, |
|
|
size_divisor=None, |
|
|
equal_resolution=False, |
|
|
numpify=False, |
|
|
torchify=False, |
|
|
): |
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, |
|
|
or a list of PyTorch tensors if one specifies torchify=True. |
|
|
|
|
|
One can specify whether the images are of the same resolution or not. |
|
|
""" |
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
|
|
batch_size = batch_size if batch_size is not None else self.batch_size |
|
|
min_resolution = min_resolution if min_resolution is not None else self.min_resolution |
|
|
max_resolution = max_resolution if max_resolution is not None else self.max_resolution |
|
|
num_channels = num_channels if num_channels is not None else self.num_channels |
|
|
num_images = num_images if num_images is not None else self.num_images |
|
|
|
|
|
images_list = [] |
|
|
for i in range(batch_size): |
|
|
images = [] |
|
|
for j in range(num_images): |
|
|
if equal_resolution: |
|
|
width = height = max_resolution |
|
|
else: |
|
|
|
|
|
if size_divisor is not None: |
|
|
|
|
|
min_resolution = max(size_divisor, min_resolution) |
|
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) |
|
|
images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) |
|
|
images_list.append(images) |
|
|
|
|
|
if not numpify and not torchify: |
|
|
|
|
|
images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list] |
|
|
|
|
|
if torchify: |
|
|
images_list = [[torch.from_numpy(image) for image in images] for images in images_list] |
|
|
|
|
|
if numpify: |
|
|
|
|
|
images_list = [[image.transpose(1, 2, 0) for image in images] for images in images_list] |
|
|
|
|
|
return images_list |
|
|
|
|
|
|
|
|
@require_torch |
|
|
@require_vision |
|
|
class AriaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): |
|
|
image_processing_class = AriaImageProcessor if is_vision_available() else None |
|
|
|
|
|
def setUp(self): |
|
|
super().setUp() |
|
|
self.image_processor_tester = AriaImageProcessingTester(self) |
|
|
|
|
|
@property |
|
|
def image_processor_dict(self): |
|
|
return self.image_processor_tester.prepare_image_processor_dict() |
|
|
|
|
|
def test_image_processor_properties(self): |
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
self.assertTrue(hasattr(image_processing, "do_convert_rgb")) |
|
|
self.assertTrue(hasattr(image_processing, "max_image_size")) |
|
|
self.assertTrue(hasattr(image_processing, "min_image_size")) |
|
|
self.assertTrue(hasattr(image_processing, "do_normalize")) |
|
|
self.assertTrue(hasattr(image_processing, "image_mean")) |
|
|
self.assertTrue(hasattr(image_processing, "image_std")) |
|
|
self.assertTrue(hasattr(image_processing, "split_image")) |
|
|
|
|
|
def test_call_numpy(self): |
|
|
for image_processing_class in self.image_processor_list: |
|
|
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) |
|
|
for sample_images in image_inputs: |
|
|
for image in sample_images: |
|
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
|
self.assertEqual( |
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
|
) |
|
|
|
|
|
def test_call_numpy_4_channels(self): |
|
|
|
|
|
for image_processing_class in self.image_processor_list: |
|
|
|
|
|
image_processor_dict = self.image_processor_dict |
|
|
image_processing = self.image_processing_class(**image_processor_dict) |
|
|
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) |
|
|
|
|
|
for sample_images in image_inputs: |
|
|
for image in sample_images: |
|
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
|
self.assertEqual( |
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
|
) |
|
|
|
|
|
def test_call_pil(self): |
|
|
for image_processing_class in self.image_processor_list: |
|
|
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) |
|
|
for images in image_inputs: |
|
|
for image in images: |
|
|
self.assertIsInstance(image, Image.Image) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
|
self.assertEqual( |
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
|
) |
|
|
|
|
|
def test_call_pytorch(self): |
|
|
for image_processing_class in self.image_processor_list: |
|
|
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) |
|
|
|
|
|
for images in image_inputs: |
|
|
for image in images: |
|
|
self.assertIsInstance(image, torch.Tensor) |
|
|
|
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
|
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
self.assertEqual( |
|
|
tuple(encoded_images.shape), |
|
|
(self.image_processor_tester.batch_size, *expected_output_image_shape), |
|
|
) |
|
|
|