|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from transformers import AlbertConfig, is_flax_available |
|
|
from transformers.testing_utils import require_flax, slow |
|
|
|
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask |
|
|
|
|
|
|
|
|
if is_flax_available(): |
|
|
import jax.numpy as jnp |
|
|
|
|
|
from transformers.models.albert.modeling_flax_albert import ( |
|
|
FlaxAlbertForMaskedLM, |
|
|
FlaxAlbertForMultipleChoice, |
|
|
FlaxAlbertForPreTraining, |
|
|
FlaxAlbertForQuestionAnswering, |
|
|
FlaxAlbertForSequenceClassification, |
|
|
FlaxAlbertForTokenClassification, |
|
|
FlaxAlbertModel, |
|
|
) |
|
|
|
|
|
|
|
|
class FlaxAlbertModelTester: |
|
|
def __init__( |
|
|
self, |
|
|
parent, |
|
|
batch_size=13, |
|
|
seq_length=7, |
|
|
is_training=True, |
|
|
use_attention_mask=True, |
|
|
use_token_type_ids=True, |
|
|
use_labels=True, |
|
|
vocab_size=99, |
|
|
hidden_size=32, |
|
|
num_hidden_layers=2, |
|
|
num_attention_heads=4, |
|
|
intermediate_size=37, |
|
|
hidden_act="gelu", |
|
|
hidden_dropout_prob=0.1, |
|
|
attention_probs_dropout_prob=0.1, |
|
|
max_position_embeddings=512, |
|
|
type_vocab_size=16, |
|
|
type_sequence_label_size=2, |
|
|
initializer_range=0.02, |
|
|
num_choices=4, |
|
|
): |
|
|
self.parent = parent |
|
|
self.batch_size = batch_size |
|
|
self.seq_length = seq_length |
|
|
self.is_training = is_training |
|
|
self.use_attention_mask = use_attention_mask |
|
|
self.use_token_type_ids = use_token_type_ids |
|
|
self.use_labels = use_labels |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.intermediate_size = intermediate_size |
|
|
self.hidden_act = hidden_act |
|
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.type_vocab_size = type_vocab_size |
|
|
self.type_sequence_label_size = type_sequence_label_size |
|
|
self.initializer_range = initializer_range |
|
|
self.num_choices = num_choices |
|
|
|
|
|
def prepare_config_and_inputs(self): |
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
|
|
attention_mask = None |
|
|
if self.use_attention_mask: |
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
|
|
token_type_ids = None |
|
|
if self.use_token_type_ids: |
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
|
|
config = AlbertConfig( |
|
|
vocab_size=self.vocab_size, |
|
|
hidden_size=self.hidden_size, |
|
|
num_hidden_layers=self.num_hidden_layers, |
|
|
num_attention_heads=self.num_attention_heads, |
|
|
intermediate_size=self.intermediate_size, |
|
|
hidden_act=self.hidden_act, |
|
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
|
max_position_embeddings=self.max_position_embeddings, |
|
|
type_vocab_size=self.type_vocab_size, |
|
|
is_decoder=False, |
|
|
initializer_range=self.initializer_range, |
|
|
) |
|
|
|
|
|
return config, input_ids, token_type_ids, attention_mask |
|
|
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
config, input_ids, token_type_ids, attention_mask = config_and_inputs |
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} |
|
|
return config, inputs_dict |
|
|
|
|
|
|
|
|
@require_flax |
|
|
class FlaxAlbertModelTest(FlaxModelTesterMixin, unittest.TestCase): |
|
|
all_model_classes = ( |
|
|
( |
|
|
FlaxAlbertModel, |
|
|
FlaxAlbertForPreTraining, |
|
|
FlaxAlbertForMaskedLM, |
|
|
FlaxAlbertForMultipleChoice, |
|
|
FlaxAlbertForQuestionAnswering, |
|
|
FlaxAlbertForSequenceClassification, |
|
|
FlaxAlbertForTokenClassification, |
|
|
FlaxAlbertForQuestionAnswering, |
|
|
) |
|
|
if is_flax_available() |
|
|
else () |
|
|
) |
|
|
|
|
|
def setUp(self): |
|
|
self.model_tester = FlaxAlbertModelTester(self) |
|
|
|
|
|
@slow |
|
|
def test_model_from_pretrained(self): |
|
|
for model_class_name in self.all_model_classes: |
|
|
model = model_class_name.from_pretrained("albert/albert-base-v2") |
|
|
outputs = model(np.ones((1, 1))) |
|
|
self.assertIsNotNone(outputs) |
|
|
|
|
|
|
|
|
@require_flax |
|
|
class FlaxAlbertModelIntegrationTest(unittest.TestCase): |
|
|
@slow |
|
|
def test_inference_no_head_absolute_embedding(self): |
|
|
model = FlaxAlbertModel.from_pretrained("albert/albert-base-v2") |
|
|
input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) |
|
|
attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) |
|
|
output = model(input_ids, attention_mask=attention_mask)[0] |
|
|
expected_shape = (1, 11, 768) |
|
|
self.assertEqual(output.shape, expected_shape) |
|
|
expected_slice = np.array( |
|
|
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] |
|
|
) |
|
|
|
|
|
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) |
|
|
|