interactSpeech
/
docs
/transformers
/examples
/tensorflow
/text-classification
/run_text_classification.py
| #!/usr/bin/env python | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Fine-tuning the library models for sequence classification.""" | |
| # You can also adapt this script on your own text classification task. Pointers for this are left as comments. | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from pathlib import Path | |
| from typing import Optional | |
| import numpy as np | |
| from datasets import load_dataset | |
| from packaging.version import parse | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| HfArgumentParser, | |
| PretrainedConfig, | |
| PushToHubCallback, | |
| TFAutoModelForSequenceClassification, | |
| TFTrainingArguments, | |
| create_optimizer, | |
| set_seed, | |
| ) | |
| from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, send_example_telemetry | |
| os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # Reduce the amount of console output from TF | |
| import tensorflow as tf # noqa: E402 | |
| try: | |
| import tf_keras as keras | |
| except (ModuleNotFoundError, ImportError): | |
| import keras | |
| if parse(keras.__version__).major > 2: | |
| raise ValueError( | |
| "Your currently installed version of Keras is Keras 3, but this is not yet supported in " | |
| "Transformers. Please install the backwards-compatible tf-keras package with " | |
| "`pip install tf-keras`." | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # region Helper classes | |
| class SavePretrainedCallback(keras.callbacks.Callback): | |
| # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary | |
| # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback | |
| # that saves the model with this method after each epoch. | |
| def __init__(self, output_dir, **kwargs): | |
| super().__init__() | |
| self.output_dir = output_dir | |
| def on_epoch_end(self, epoch, logs=None): | |
| self.model.save_pretrained(self.output_dir) | |
| # endregion | |
| # region Command-line arguments | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| train_file: Optional[str] = field( | |
| default=None, metadata={"help": "A csv or a json file containing the training data."} | |
| ) | |
| validation_file: Optional[str] = field( | |
| default=None, metadata={"help": "A csv or a json file containing the validation data."} | |
| ) | |
| test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) | |
| max_seq_length: int = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch. " | |
| "Data will always be padded when using TPUs." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_val_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of validation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_test_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of test examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None | |
| validation_extension = ( | |
| self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None | |
| ) | |
| test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None | |
| extensions = {train_extension, validation_extension, test_extension} | |
| extensions.discard(None) | |
| assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!" | |
| assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!" | |
| assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!" | |
| self.input_file_extension = extensions.pop() | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will " | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| # endregion | |
| def main(): | |
| # region Argument parsing | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow") | |
| output_dir = Path(training_args.output_dir) | |
| output_dir.mkdir(parents=True, exist_ok=True) | |
| # endregion | |
| # region Checkpoints | |
| # Detecting last checkpoint. | |
| checkpoint = None | |
| if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
| if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): | |
| checkpoint = output_dir | |
| logger.info( | |
| f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
| " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to continue regardless." | |
| ) | |
| # endregion | |
| # region Logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logger.setLevel(logging.INFO) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # endregion | |
| # region Loading data | |
| # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally | |
| # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two | |
| # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than | |
| # a single grammatical sentence, when the task requires it. | |
| # | |
| # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this | |
| # single column. You can easily tweak this behavior (see below) | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file} | |
| data_files = {key: file for key, file in data_files.items() if file is not None} | |
| for key in data_files.keys(): | |
| logger.info(f"Loading a local file for {key}: {data_files[key]}") | |
| if data_args.input_file_extension == "csv": | |
| # Loading a dataset from local csv files | |
| datasets = load_dataset( | |
| "csv", | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| # Loading a dataset from local json files | |
| datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) | |
| # See more about loading any type of standard or custom dataset at | |
| # https://huggingface.co/docs/datasets/loading_datasets. | |
| # endregion | |
| # region Label preprocessing | |
| # If you've passed us a training set, we try to infer your labels from it | |
| if "train" in datasets: | |
| # By default we assume that if your label column looks like a float then you're doing regression, | |
| # and if not then you're doing classification. This is something you may want to change! | |
| is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] | |
| if is_regression: | |
| num_labels = 1 | |
| else: | |
| # A useful fast method: | |
| # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique | |
| label_list = datasets["train"].unique("label") | |
| label_list.sort() # Let's sort it for determinism | |
| num_labels = len(label_list) | |
| # If you haven't passed a training set, we read label info from the saved model (this happens later) | |
| else: | |
| num_labels = None | |
| label_list = None | |
| is_regression = None | |
| # endregion | |
| # region Load model config and tokenizer | |
| if checkpoint is not None: | |
| config_path = training_args.output_dir | |
| elif model_args.config_name: | |
| config_path = model_args.config_name | |
| else: | |
| config_path = model_args.model_name_or_path | |
| if num_labels is not None: | |
| config = AutoConfig.from_pretrained( | |
| config_path, | |
| num_labels=num_labels, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| else: | |
| config = AutoConfig.from_pretrained( | |
| config_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # endregion | |
| # region Dataset preprocessing | |
| # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. | |
| column_names = {col for cols in datasets.column_names.values() for col in cols} | |
| non_label_column_names = [name for name in column_names if name != "label"] | |
| if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: | |
| sentence1_key, sentence2_key = "sentence1", "sentence2" | |
| elif "sentence1" in non_label_column_names: | |
| sentence1_key, sentence2_key = "sentence1", None | |
| else: | |
| if len(non_label_column_names) >= 2: | |
| sentence1_key, sentence2_key = non_label_column_names[:2] | |
| else: | |
| sentence1_key, sentence2_key = non_label_column_names[0], None | |
| if data_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " | |
| f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
| ) | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| # Ensure that our labels match the model's, if it has some pre-specified | |
| if "train" in datasets: | |
| if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id: | |
| label_name_to_id = config.label2id | |
| if sorted(label_name_to_id.keys()) == sorted(label_list): | |
| label_to_id = label_name_to_id # Use the model's labels | |
| else: | |
| logger.warning( | |
| "Your model seems to have been trained with labels, but they don't match the dataset: " | |
| f"model labels: {sorted(label_name_to_id.keys())}, dataset labels:" | |
| f" {sorted(label_list)}.\nIgnoring the model labels as a result.", | |
| ) | |
| label_to_id = {v: i for i, v in enumerate(label_list)} | |
| elif not is_regression: | |
| label_to_id = {v: i for i, v in enumerate(label_list)} | |
| else: | |
| label_to_id = None | |
| # Now we've established our label2id, let's overwrite the model config with it. | |
| config.label2id = label_to_id | |
| if config.label2id is not None: | |
| config.id2label = {id: label for label, id in label_to_id.items()} | |
| else: | |
| config.id2label = None | |
| else: | |
| label_to_id = config.label2id # Just load the data from the model | |
| if "validation" in datasets and config.label2id is not None: | |
| validation_label_list = datasets["validation"].unique("label") | |
| for val_label in validation_label_list: | |
| assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!" | |
| def preprocess_function(examples): | |
| # Tokenize the texts | |
| args = ( | |
| (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) | |
| ) | |
| result = tokenizer(*args, max_length=max_seq_length, truncation=True) | |
| # Map labels to IDs | |
| if config.label2id is not None and "label" in examples: | |
| result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]] | |
| return result | |
| datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) | |
| # endregion | |
| with training_args.strategy.scope(): | |
| # region Load pretrained model | |
| # Set seed before initializing model | |
| set_seed(training_args.seed) | |
| # | |
| # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| if checkpoint is None: | |
| model_path = model_args.model_name_or_path | |
| else: | |
| model_path = checkpoint | |
| model = TFAutoModelForSequenceClassification.from_pretrained( | |
| model_path, | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # endregion | |
| # region Convert data to a tf.data.Dataset | |
| dataset_options = tf.data.Options() | |
| dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
| num_replicas = training_args.strategy.num_replicas_in_sync | |
| tf_data = {} | |
| max_samples = { | |
| "train": data_args.max_train_samples, | |
| "validation": data_args.max_val_samples, | |
| "test": data_args.max_test_samples, | |
| } | |
| for key in ("train", "validation", "test"): | |
| if key not in datasets: | |
| tf_data[key] = None | |
| continue | |
| if ( | |
| (key == "train" and not training_args.do_train) | |
| or (key == "validation" and not training_args.do_eval) | |
| or (key == "test" and not training_args.do_predict) | |
| ): | |
| tf_data[key] = None | |
| continue | |
| if key in ("train", "validation"): | |
| assert "label" in datasets[key].features, f"Missing labels from {key} data!" | |
| if key == "train": | |
| shuffle = True | |
| batch_size = training_args.per_device_train_batch_size * num_replicas | |
| else: | |
| shuffle = False | |
| batch_size = training_args.per_device_eval_batch_size * num_replicas | |
| samples_limit = max_samples[key] | |
| dataset = datasets[key] | |
| if samples_limit is not None: | |
| dataset = dataset.select(range(samples_limit)) | |
| # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
| # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
| # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
| # yourself if you use this method, whereas they are automatically inferred from the model input names when | |
| # using model.prepare_tf_dataset() | |
| # For more info see the docs: | |
| # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
| # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
| data = model.prepare_tf_dataset( | |
| dataset, | |
| shuffle=shuffle, | |
| batch_size=batch_size, | |
| tokenizer=tokenizer, | |
| ) | |
| data = data.with_options(dataset_options) | |
| tf_data[key] = data | |
| # endregion | |
| # region Optimizer, loss and compilation | |
| if training_args.do_train: | |
| num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs | |
| if training_args.warmup_steps > 0: | |
| num_warmup_steps = training_args.warmup_steps | |
| elif training_args.warmup_ratio > 0: | |
| num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
| else: | |
| num_warmup_steps = 0 | |
| optimizer, schedule = create_optimizer( | |
| init_lr=training_args.learning_rate, | |
| num_train_steps=num_train_steps, | |
| num_warmup_steps=num_warmup_steps, | |
| adam_beta1=training_args.adam_beta1, | |
| adam_beta2=training_args.adam_beta2, | |
| adam_epsilon=training_args.adam_epsilon, | |
| weight_decay_rate=training_args.weight_decay, | |
| adam_global_clipnorm=training_args.max_grad_norm, | |
| ) | |
| else: | |
| optimizer = "sgd" # Just use any default | |
| if is_regression: | |
| metrics = [] | |
| else: | |
| metrics = ["accuracy"] | |
| # Transformers models compute the right loss for their task by default when labels are passed, and will | |
| # use this for training unless you specify your own loss function in compile(). | |
| model.compile(optimizer=optimizer, metrics=metrics) | |
| # endregion | |
| # region Preparing push_to_hub and model card | |
| push_to_hub_model_id = training_args.push_to_hub_model_id | |
| model_name = model_args.model_name_or_path.split("/")[-1] | |
| if not push_to_hub_model_id: | |
| push_to_hub_model_id = f"{model_name}-finetuned-text-classification" | |
| model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} | |
| if training_args.push_to_hub: | |
| callbacks = [ | |
| PushToHubCallback( | |
| output_dir=training_args.output_dir, | |
| hub_model_id=push_to_hub_model_id, | |
| hub_token=training_args.push_to_hub_token, | |
| tokenizer=tokenizer, | |
| **model_card_kwargs, | |
| ) | |
| ] | |
| else: | |
| callbacks = [] | |
| # endregion | |
| # region Training and validation | |
| if tf_data["train"] is not None: | |
| model.fit( | |
| tf_data["train"], | |
| validation_data=tf_data["validation"], | |
| epochs=int(training_args.num_train_epochs), | |
| callbacks=callbacks, | |
| ) | |
| if tf_data["validation"] is not None: | |
| logger.info("Computing metrics on validation data...") | |
| if is_regression: | |
| loss = model.evaluate(tf_data["validation"]) | |
| logger.info(f"Eval loss: {loss:.5f}") | |
| else: | |
| loss, accuracy = model.evaluate(tf_data["validation"]) | |
| logger.info(f"Eval loss: {loss:.5f}, Eval accuracy: {accuracy * 100:.4f}%") | |
| if training_args.output_dir is not None: | |
| output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
| eval_dict = {"eval_loss": loss} | |
| if not is_regression: | |
| eval_dict["eval_accuracy"] = accuracy | |
| with open(output_eval_file, "w") as writer: | |
| writer.write(json.dumps(eval_dict)) | |
| # endregion | |
| # region Prediction | |
| if tf_data["test"] is not None: | |
| logger.info("Doing predictions on test dataset...") | |
| predictions = model.predict(tf_data["test"])["logits"] | |
| predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) | |
| output_test_file = os.path.join(training_args.output_dir, "test_results.txt") | |
| with open(output_test_file, "w") as writer: | |
| writer.write("index\tprediction\n") | |
| for index, item in enumerate(predicted_class): | |
| if is_regression: | |
| writer.write(f"{index}\t{item:3.3f}\n") | |
| else: | |
| item = config.id2label[item] | |
| writer.write(f"{index}\t{item}\n") | |
| logger.info(f"Wrote predictions to {output_test_file}!") | |
| # endregion | |
| if training_args.output_dir is not None and not training_args.push_to_hub: | |
| # If we're not pushing to hub, at least save a local copy when we're done | |
| model.save_pretrained(training_args.output_dir) | |
| if __name__ == "__main__": | |
| main() | |