|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  | from typing import Optional | 
					
						
						|  |  | 
					
						
						|  | from seq2seq_trainer import Seq2SeqTrainer | 
					
						
						|  | from seq2seq_training_args import Seq2SeqTrainingArguments | 
					
						
						|  |  | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers import ( | 
					
						
						|  | AutoConfig, | 
					
						
						|  | AutoModelForSeq2SeqLM, | 
					
						
						|  | AutoTokenizer, | 
					
						
						|  | HfArgumentParser, | 
					
						
						|  | MBartTokenizer, | 
					
						
						|  | MBartTokenizerFast, | 
					
						
						|  | set_seed, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.trainer_utils import EvaluationStrategy, is_main_process | 
					
						
						|  | from transformers.training_args import ParallelMode | 
					
						
						|  | from utils import ( | 
					
						
						|  | Seq2SeqDataCollator, | 
					
						
						|  | Seq2SeqDataset, | 
					
						
						|  | assert_all_frozen, | 
					
						
						|  | build_compute_metrics_fn, | 
					
						
						|  | check_output_dir, | 
					
						
						|  | freeze_embeds, | 
					
						
						|  | freeze_params, | 
					
						
						|  | lmap, | 
					
						
						|  | save_json, | 
					
						
						|  | use_task_specific_params, | 
					
						
						|  | write_txt_file, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_name_or_path: str = field( | 
					
						
						|  | metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | 
					
						
						|  | ) | 
					
						
						|  | config_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | 
					
						
						|  | ) | 
					
						
						|  | freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) | 
					
						
						|  | freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataTrainingArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to what data we are going to input our model for training and eval. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | data_dir: str = field( | 
					
						
						|  | metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} | 
					
						
						|  | ) | 
					
						
						|  | task: Optional[str] = field( | 
					
						
						|  | default="summarization", | 
					
						
						|  | metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, | 
					
						
						|  | ) | 
					
						
						|  | max_source_length: Optional[int] = field( | 
					
						
						|  | default=1024, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The maximum total input sequence length after tokenization. Sequences longer " | 
					
						
						|  | "than this will be truncated, sequences shorter will be padded." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | max_target_length: Optional[int] = field( | 
					
						
						|  | default=128, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The maximum total sequence length for target text after tokenization. Sequences longer " | 
					
						
						|  | "than this will be truncated, sequences shorter will be padded." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | val_max_target_length: Optional[int] = field( | 
					
						
						|  | default=142, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The maximum total sequence length for validation target text after tokenization. Sequences longer " | 
					
						
						|  | "than this will be truncated, sequences shorter will be padded. " | 
					
						
						|  | "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | 
					
						
						|  | "during ``evaluate`` and ``predict``." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | test_max_target_length: Optional[int] = field( | 
					
						
						|  | default=142, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The maximum total sequence length for test target text after tokenization. Sequences longer " | 
					
						
						|  | "than this will be truncated, sequences shorter will be padded." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) | 
					
						
						|  | n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) | 
					
						
						|  | n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) | 
					
						
						|  | src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) | 
					
						
						|  | tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) | 
					
						
						|  | eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) | 
					
						
						|  | ignore_pad_token_for_loss: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def handle_metrics(split, metrics, output_dir): | 
					
						
						|  | """ | 
					
						
						|  | Log and save metrics | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - split: one of train, val, test | 
					
						
						|  | - metrics: metrics dict | 
					
						
						|  | - output_dir: where to save the metrics | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"***** {split} metrics *****") | 
					
						
						|  | for key in sorted(metrics.keys()): | 
					
						
						|  | logger.info(f"  {key} = {metrics[key]}") | 
					
						
						|  | save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
						
						|  | else: | 
					
						
						|  | model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
						
						|  |  | 
					
						
						|  | check_output_dir(training_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig( | 
					
						
						|  | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
						
						|  | datefmt="%m/%d/%Y %H:%M:%S", | 
					
						
						|  | level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | 
					
						
						|  | training_args.local_rank, | 
					
						
						|  | training_args.device, | 
					
						
						|  | training_args.n_gpu, | 
					
						
						|  | bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), | 
					
						
						|  | training_args.fp16, | 
					
						
						|  | ) | 
					
						
						|  | transformers.utils.logging.enable_default_handler() | 
					
						
						|  | transformers.utils.logging.enable_explicit_format() | 
					
						
						|  |  | 
					
						
						|  | if is_main_process(training_args.local_rank): | 
					
						
						|  | transformers.utils.logging.set_verbosity_info() | 
					
						
						|  | logger.info("Training/evaluation parameters %s", training_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | set_seed(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = AutoConfig.from_pretrained( | 
					
						
						|  | model_args.config_name if model_args.config_name else model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") | 
					
						
						|  | for p in extra_model_params: | 
					
						
						|  | if getattr(training_args, p, None): | 
					
						
						|  | assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" | 
					
						
						|  | setattr(config, p, getattr(training_args, p)) | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  | model = AutoModelForSeq2SeqLM.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, | 
					
						
						|  | from_tf=".ckpt" in model_args.model_name_or_path, | 
					
						
						|  | config=config, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | use_task_specific_params(model, data_args.task) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if data_args.eval_beams is None: | 
					
						
						|  | data_args.eval_beams = model.config.num_beams | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): | 
					
						
						|  | assert data_args.tgt_lang is not None and data_args.src_lang is not None, ( | 
					
						
						|  | "mBart requires --tgt_lang and --src_lang" | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(tokenizer, MBartTokenizer): | 
					
						
						|  | model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] | 
					
						
						|  | else: | 
					
						
						|  | model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) | 
					
						
						|  |  | 
					
						
						|  | if model_args.freeze_embeds: | 
					
						
						|  | freeze_embeds(model) | 
					
						
						|  | if model_args.freeze_encoder: | 
					
						
						|  | freeze_params(model.get_encoder()) | 
					
						
						|  | assert_all_frozen(model.get_encoder()) | 
					
						
						|  |  | 
					
						
						|  | dataset_class = Seq2SeqDataset | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | train_dataset = ( | 
					
						
						|  | dataset_class( | 
					
						
						|  | tokenizer, | 
					
						
						|  | type_path="train", | 
					
						
						|  | data_dir=data_args.data_dir, | 
					
						
						|  | n_obs=data_args.n_train, | 
					
						
						|  | max_target_length=data_args.max_target_length, | 
					
						
						|  | max_source_length=data_args.max_source_length, | 
					
						
						|  | prefix=model.config.prefix or "", | 
					
						
						|  | ) | 
					
						
						|  | if training_args.do_train | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | eval_dataset = ( | 
					
						
						|  | dataset_class( | 
					
						
						|  | tokenizer, | 
					
						
						|  | type_path="val", | 
					
						
						|  | data_dir=data_args.data_dir, | 
					
						
						|  | n_obs=data_args.n_val, | 
					
						
						|  | max_target_length=data_args.val_max_target_length, | 
					
						
						|  | max_source_length=data_args.max_source_length, | 
					
						
						|  | prefix=model.config.prefix or "", | 
					
						
						|  | ) | 
					
						
						|  | if training_args.do_eval or training_args.eval_strategy != EvaluationStrategy.NO | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | test_dataset = ( | 
					
						
						|  | dataset_class( | 
					
						
						|  | tokenizer, | 
					
						
						|  | type_path="test", | 
					
						
						|  | data_dir=data_args.data_dir, | 
					
						
						|  | n_obs=data_args.n_test, | 
					
						
						|  | max_target_length=data_args.test_max_target_length, | 
					
						
						|  | max_source_length=data_args.max_source_length, | 
					
						
						|  | prefix=model.config.prefix or "", | 
					
						
						|  | ) | 
					
						
						|  | if training_args.do_predict | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | compute_metrics_fn = ( | 
					
						
						|  | build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None | 
					
						
						|  | ) | 
					
						
						|  | trainer = Seq2SeqTrainer( | 
					
						
						|  | model=model, | 
					
						
						|  | args=training_args, | 
					
						
						|  | data_args=data_args, | 
					
						
						|  | train_dataset=train_dataset, | 
					
						
						|  | eval_dataset=eval_dataset, | 
					
						
						|  | data_collator=Seq2SeqDataCollator( | 
					
						
						|  | tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores | 
					
						
						|  | ), | 
					
						
						|  | compute_metrics=compute_metrics_fn, | 
					
						
						|  | processing_class=tokenizer, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | all_metrics = {} | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | logger.info("*** Train ***") | 
					
						
						|  |  | 
					
						
						|  | train_result = trainer.train( | 
					
						
						|  | model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | 
					
						
						|  | ) | 
					
						
						|  | metrics = train_result.metrics | 
					
						
						|  | metrics["train_n_objs"] = data_args.n_train | 
					
						
						|  |  | 
					
						
						|  | trainer.save_model() | 
					
						
						|  |  | 
					
						
						|  | if trainer.is_world_process_zero(): | 
					
						
						|  | handle_metrics("train", metrics, training_args.output_dir) | 
					
						
						|  | all_metrics.update(metrics) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer.save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | logger.info("*** Evaluate ***") | 
					
						
						|  |  | 
					
						
						|  | metrics = trainer.evaluate(metric_key_prefix="val") | 
					
						
						|  | metrics["val_n_objs"] = data_args.n_val | 
					
						
						|  | metrics["val_loss"] = round(metrics["val_loss"], 4) | 
					
						
						|  |  | 
					
						
						|  | if trainer.is_world_process_zero(): | 
					
						
						|  | handle_metrics("val", metrics, training_args.output_dir) | 
					
						
						|  | all_metrics.update(metrics) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_predict: | 
					
						
						|  | logger.info("*** Predict ***") | 
					
						
						|  |  | 
					
						
						|  | test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") | 
					
						
						|  | metrics = test_output.metrics | 
					
						
						|  | metrics["test_n_objs"] = data_args.n_test | 
					
						
						|  |  | 
					
						
						|  | if trainer.is_world_process_zero(): | 
					
						
						|  | metrics["test_loss"] = round(metrics["test_loss"], 4) | 
					
						
						|  | handle_metrics("test", metrics, training_args.output_dir) | 
					
						
						|  | all_metrics.update(metrics) | 
					
						
						|  |  | 
					
						
						|  | if training_args.predict_with_generate: | 
					
						
						|  | test_preds = tokenizer.batch_decode( | 
					
						
						|  | test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | 
					
						
						|  | ) | 
					
						
						|  | test_preds = lmap(str.strip, test_preds) | 
					
						
						|  | write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) | 
					
						
						|  |  | 
					
						
						|  | if trainer.is_world_process_zero(): | 
					
						
						|  | save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) | 
					
						
						|  |  | 
					
						
						|  | return all_metrics | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _mp_fn(index): | 
					
						
						|  |  | 
					
						
						|  | main() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |