interactSpeech
/
docs
/transformers
/examples
/pytorch
/instance-segmentation
/run_instance_segmentation.py
| #!/usr/bin/env python | |
| # Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| """Finetuning 🤗 Transformers model for instance segmentation leveraging the Trainer API.""" | |
| import logging | |
| import os | |
| import sys | |
| from collections.abc import Mapping | |
| from dataclasses import dataclass, field | |
| from functools import partial | |
| from typing import Any, Optional | |
| import albumentations as A | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from torchmetrics.detection.mean_ap import MeanAveragePrecision | |
| import transformers | |
| from transformers import ( | |
| AutoImageProcessor, | |
| AutoModelForUniversalSegmentation, | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| ) | |
| from transformers.image_processing_utils import BatchFeature | |
| from transformers.trainer import EvalPrediction | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| logger = logging.getLogger(__name__) | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.52.0.dev0") | |
| require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt") | |
| class Arguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify | |
| them on the command line. | |
| """ | |
| model_name_or_path: str = field( | |
| default="facebook/mask2former-swin-tiny-coco-instance", | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, | |
| ) | |
| dataset_name: str = field( | |
| default="qubvel-hf/ade20k-mini", | |
| metadata={ | |
| "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to trust the execution of code from datasets/models defined on the Hub." | |
| " This option should only be set to `True` for repositories you trust and in which you have read the" | |
| " code, as it will execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| image_height: Optional[int] = field(default=512, metadata={"help": "Image height after resizing."}) | |
| image_width: Optional[int] = field(default=512, metadata={"help": "Image width after resizing."}) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| do_reduce_labels: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "If background class is labeled as 0 and you want to remove it from the labels, set this flag to True." | |
| ) | |
| }, | |
| ) | |
| def augment_and_transform_batch( | |
| examples: Mapping[str, Any], transform: A.Compose, image_processor: AutoImageProcessor | |
| ) -> BatchFeature: | |
| batch = { | |
| "pixel_values": [], | |
| "mask_labels": [], | |
| "class_labels": [], | |
| } | |
| for pil_image, pil_annotation in zip(examples["image"], examples["annotation"]): | |
| image = np.array(pil_image) | |
| semantic_and_instance_masks = np.array(pil_annotation)[..., :2] | |
| # Apply augmentations | |
| output = transform(image=image, mask=semantic_and_instance_masks) | |
| aug_image = output["image"] | |
| aug_semantic_and_instance_masks = output["mask"] | |
| aug_instance_mask = aug_semantic_and_instance_masks[..., 1] | |
| # Create mapping from instance id to semantic id | |
| unique_semantic_id_instance_id_pairs = np.unique(aug_semantic_and_instance_masks.reshape(-1, 2), axis=0) | |
| instance_id_to_semantic_id = { | |
| instance_id: semantic_id for semantic_id, instance_id in unique_semantic_id_instance_id_pairs | |
| } | |
| # Apply the image processor transformations: resizing, rescaling, normalization | |
| model_inputs = image_processor( | |
| images=[aug_image], | |
| segmentation_maps=[aug_instance_mask], | |
| instance_id_to_semantic_id=instance_id_to_semantic_id, | |
| return_tensors="pt", | |
| ) | |
| batch["pixel_values"].append(model_inputs.pixel_values[0]) | |
| batch["mask_labels"].append(model_inputs.mask_labels[0]) | |
| batch["class_labels"].append(model_inputs.class_labels[0]) | |
| return batch | |
| def collate_fn(examples): | |
| batch = {} | |
| batch["pixel_values"] = torch.stack([example["pixel_values"] for example in examples]) | |
| batch["class_labels"] = [example["class_labels"] for example in examples] | |
| batch["mask_labels"] = [example["mask_labels"] for example in examples] | |
| if "pixel_mask" in examples[0]: | |
| batch["pixel_mask"] = torch.stack([example["pixel_mask"] for example in examples]) | |
| return batch | |
| class ModelOutput: | |
| class_queries_logits: torch.Tensor | |
| masks_queries_logits: torch.Tensor | |
| def nested_cpu(tensors): | |
| if isinstance(tensors, (list, tuple)): | |
| return type(tensors)(nested_cpu(t) for t in tensors) | |
| elif isinstance(tensors, Mapping): | |
| return type(tensors)({k: nested_cpu(t) for k, t in tensors.items()}) | |
| elif isinstance(tensors, torch.Tensor): | |
| return tensors.cpu().detach() | |
| else: | |
| return tensors | |
| class Evaluator: | |
| """ | |
| Compute metrics for the instance segmentation task. | |
| """ | |
| def __init__( | |
| self, | |
| image_processor: AutoImageProcessor, | |
| id2label: Mapping[int, str], | |
| threshold: float = 0.0, | |
| ): | |
| """ | |
| Initialize evaluator with image processor, id2label mapping and threshold for filtering predictions. | |
| Args: | |
| image_processor (AutoImageProcessor): Image processor for | |
| `post_process_instance_segmentation` method. | |
| id2label (Mapping[int, str]): Mapping from class id to class name. | |
| threshold (float): Threshold to filter predicted boxes by confidence. Defaults to 0.0. | |
| """ | |
| self.image_processor = image_processor | |
| self.id2label = id2label | |
| self.threshold = threshold | |
| self.metric = self.get_metric() | |
| def get_metric(self): | |
| metric = MeanAveragePrecision(iou_type="segm", class_metrics=True) | |
| return metric | |
| def reset_metric(self): | |
| self.metric.reset() | |
| def postprocess_target_batch(self, target_batch) -> list[dict[str, torch.Tensor]]: | |
| """Collect targets in a form of list of dictionaries with keys "masks", "labels".""" | |
| batch_masks = target_batch[0] | |
| batch_labels = target_batch[1] | |
| post_processed_targets = [] | |
| for masks, labels in zip(batch_masks, batch_labels): | |
| post_processed_targets.append( | |
| { | |
| "masks": masks.to(dtype=torch.bool), | |
| "labels": labels, | |
| } | |
| ) | |
| return post_processed_targets | |
| def get_target_sizes(self, post_processed_targets) -> list[list[int]]: | |
| target_sizes = [] | |
| for target in post_processed_targets: | |
| target_sizes.append(target["masks"].shape[-2:]) | |
| return target_sizes | |
| def postprocess_prediction_batch(self, prediction_batch, target_sizes) -> list[dict[str, torch.Tensor]]: | |
| """Collect predictions in a form of list of dictionaries with keys "masks", "labels", "scores".""" | |
| model_output = ModelOutput(class_queries_logits=prediction_batch[0], masks_queries_logits=prediction_batch[1]) | |
| post_processed_output = self.image_processor.post_process_instance_segmentation( | |
| model_output, | |
| threshold=self.threshold, | |
| target_sizes=target_sizes, | |
| return_binary_maps=True, | |
| ) | |
| post_processed_predictions = [] | |
| for image_predictions, target_size in zip(post_processed_output, target_sizes): | |
| if image_predictions["segments_info"]: | |
| post_processed_image_prediction = { | |
| "masks": image_predictions["segmentation"].to(dtype=torch.bool), | |
| "labels": torch.tensor([x["label_id"] for x in image_predictions["segments_info"]]), | |
| "scores": torch.tensor([x["score"] for x in image_predictions["segments_info"]]), | |
| } | |
| else: | |
| # for void predictions, we need to provide empty tensors | |
| post_processed_image_prediction = { | |
| "masks": torch.zeros([0, *target_size], dtype=torch.bool), | |
| "labels": torch.tensor([]), | |
| "scores": torch.tensor([]), | |
| } | |
| post_processed_predictions.append(post_processed_image_prediction) | |
| return post_processed_predictions | |
| def __call__(self, evaluation_results: EvalPrediction, compute_result: bool = False) -> Mapping[str, float]: | |
| """ | |
| Update metrics with current evaluation results and return metrics if `compute_result` is True. | |
| Args: | |
| evaluation_results (EvalPrediction): Predictions and targets from evaluation. | |
| compute_result (bool): Whether to compute and return metrics. | |
| Returns: | |
| Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>} | |
| """ | |
| prediction_batch = nested_cpu(evaluation_results.predictions) | |
| target_batch = nested_cpu(evaluation_results.label_ids) | |
| # For metric computation we need to provide: | |
| # - targets in a form of list of dictionaries with keys "masks", "labels" | |
| # - predictions in a form of list of dictionaries with keys "masks", "labels", "scores" | |
| post_processed_targets = self.postprocess_target_batch(target_batch) | |
| target_sizes = self.get_target_sizes(post_processed_targets) | |
| post_processed_predictions = self.postprocess_prediction_batch(prediction_batch, target_sizes) | |
| # Compute metrics | |
| self.metric.update(post_processed_predictions, post_processed_targets) | |
| if not compute_result: | |
| return | |
| metrics = self.metric.compute() | |
| # Replace list of per class metrics with separate metric for each class | |
| classes = metrics.pop("classes") | |
| map_per_class = metrics.pop("map_per_class") | |
| mar_100_per_class = metrics.pop("mar_100_per_class") | |
| for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class): | |
| class_name = self.id2label[class_id.item()] if self.id2label is not None else class_id.item() | |
| metrics[f"map_{class_name}"] = class_map | |
| metrics[f"mar_100_{class_name}"] = class_mar | |
| metrics = {k: round(v.item(), 4) for k, v in metrics.items()} | |
| # Reset metric for next evaluation | |
| self.reset_metric() | |
| return metrics | |
| def setup_logging(training_args: TrainingArguments) -> None: | |
| """Setup logging according to `training_args`.""" | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| def find_last_checkpoint(training_args: TrainingArguments) -> Optional[str]: | |
| """Find the last checkpoint in the output directory according to parameters specified in `training_args`.""" | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir: | |
| checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| return checkpoint | |
| def main(): | |
| # See all possible arguments in https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments | |
| # or by passing the --help flag to this script. | |
| parser = HfArgumentParser([Arguments, TrainingArguments]) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| args, training_args = parser.parse_args_into_dataclasses() | |
| # Set default training arguments for instance segmentation | |
| training_args.eval_do_concat_batches = False | |
| training_args.batch_eval_metrics = True | |
| training_args.remove_unused_columns = False | |
| # # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_instance_segmentation", args) | |
| # Setup logging and log on each process the small summary: | |
| setup_logging(training_args) | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " | |
| + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Load last checkpoint from output_dir if it exists (and we are not overwriting it) | |
| checkpoint = find_last_checkpoint(training_args) | |
| # ------------------------------------------------------------------------------------------------ | |
| # Load dataset, prepare splits | |
| # ------------------------------------------------------------------------------------------------ | |
| dataset = load_dataset(args.dataset_name, trust_remote_code=args.trust_remote_code) | |
| # We need to specify the label2id mapping for the model | |
| # it is a mapping from semantic class name to class index. | |
| # In case your dataset does not provide it, you can create it manually: | |
| # label2id = {"background": 0, "cat": 1, "dog": 2} | |
| label2id = dataset["train"][0]["semantic_class_to_id"] | |
| if args.do_reduce_labels: | |
| label2id = {name: idx for name, idx in label2id.items() if idx != 0} # remove background class | |
| label2id = {name: idx - 1 for name, idx in label2id.items()} # shift class indices by -1 | |
| id2label = {v: k for k, v in label2id.items()} | |
| # ------------------------------------------------------------------------------------------------ | |
| # Load pretrained config, model and image processor | |
| # ------------------------------------------------------------------------------------------------ | |
| model = AutoModelForUniversalSegmentation.from_pretrained( | |
| args.model_name_or_path, | |
| label2id=label2id, | |
| id2label=id2label, | |
| ignore_mismatched_sizes=True, | |
| token=args.token, | |
| ) | |
| image_processor = AutoImageProcessor.from_pretrained( | |
| args.model_name_or_path, | |
| do_resize=True, | |
| size={"height": args.image_height, "width": args.image_width}, | |
| do_reduce_labels=args.do_reduce_labels, | |
| reduce_labels=args.do_reduce_labels, # TODO: remove when mask2former support `do_reduce_labels` | |
| token=args.token, | |
| ) | |
| # ------------------------------------------------------------------------------------------------ | |
| # Define image augmentations and dataset transforms | |
| # ------------------------------------------------------------------------------------------------ | |
| train_augment_and_transform = A.Compose( | |
| [ | |
| A.HorizontalFlip(p=0.5), | |
| A.RandomBrightnessContrast(p=0.5), | |
| A.HueSaturationValue(p=0.1), | |
| ], | |
| ) | |
| validation_transform = A.Compose( | |
| [A.NoOp()], | |
| ) | |
| # Make transform functions for batch and apply for dataset splits | |
| train_transform_batch = partial( | |
| augment_and_transform_batch, transform=train_augment_and_transform, image_processor=image_processor | |
| ) | |
| validation_transform_batch = partial( | |
| augment_and_transform_batch, transform=validation_transform, image_processor=image_processor | |
| ) | |
| dataset["train"] = dataset["train"].with_transform(train_transform_batch) | |
| dataset["validation"] = dataset["validation"].with_transform(validation_transform_batch) | |
| # ------------------------------------------------------------------------------------------------ | |
| # Model training and evaluation with Trainer API | |
| # ------------------------------------------------------------------------------------------------ | |
| compute_metrics = Evaluator(image_processor=image_processor, id2label=id2label, threshold=0.0) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=dataset["train"] if training_args.do_train else None, | |
| eval_dataset=dataset["validation"] if training_args.do_eval else None, | |
| processing_class=image_processor, | |
| data_collator=collate_fn, | |
| compute_metrics=compute_metrics, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() | |
| trainer.log_metrics("train", train_result.metrics) | |
| trainer.save_metrics("train", train_result.metrics) | |
| trainer.save_state() | |
| # Final evaluation | |
| if training_args.do_eval: | |
| metrics = trainer.evaluate(eval_dataset=dataset["validation"], metric_key_prefix="test") | |
| trainer.log_metrics("test", metrics) | |
| trainer.save_metrics("test", metrics) | |
| # Write model card and (optionally) push to hub | |
| kwargs = { | |
| "finetuned_from": args.model_name_or_path, | |
| "dataset": args.dataset_name, | |
| "tags": ["image-segmentation", "instance-segmentation", "vision"], | |
| } | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| if __name__ == "__main__": | |
| main() | |