|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import copy | 
					
						
						|  | import inspect | 
					
						
						|  | import tempfile | 
					
						
						|  |  | 
					
						
						|  | from transformers.testing_utils import require_torch, torch_device | 
					
						
						|  | from transformers.utils.backbone_utils import BackboneType | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @require_torch | 
					
						
						|  | class BackboneTesterMixin: | 
					
						
						|  | all_model_classes = () | 
					
						
						|  | has_attentions = True | 
					
						
						|  |  | 
					
						
						|  | def test_config(self): | 
					
						
						|  | config_class = self.config_class | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = config_class() | 
					
						
						|  | self.assertIsNotNone(config) | 
					
						
						|  | num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers | 
					
						
						|  | expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)] | 
					
						
						|  | self.assertEqual(config.stage_names, expected_stage_names) | 
					
						
						|  | self.assertTrue(set(config.out_features).issubset(set(config.stage_names))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = config_class(out_features=None, out_indices=None) | 
					
						
						|  | self.assertEqual(config.out_features, [config.stage_names[-1]]) | 
					
						
						|  | self.assertEqual(config.out_indices, [len(config.stage_names) - 1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1]) | 
					
						
						|  | self.assertEqual(config.out_features, ["stem", "stage1"]) | 
					
						
						|  | self.assertEqual(config.out_indices, [0, 1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = config_class(out_features=["stage1", "stage3"]) | 
					
						
						|  | self.assertEqual(config.out_features, ["stage1", "stage3"]) | 
					
						
						|  | self.assertEqual(config.out_indices, [1, 3]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = config_class(out_indices=[0, 2]) | 
					
						
						|  | self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]]) | 
					
						
						|  | self.assertEqual(config.out_indices, [0, 2]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.assertRaises(ValueError): | 
					
						
						|  | config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2]) | 
					
						
						|  |  | 
					
						
						|  | def test_forward_signature(self): | 
					
						
						|  | config, _ = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  |  | 
					
						
						|  | for model_class in self.all_model_classes: | 
					
						
						|  | model = model_class(config) | 
					
						
						|  | signature = inspect.signature(model.forward) | 
					
						
						|  |  | 
					
						
						|  | arg_names = [*signature.parameters.keys()] | 
					
						
						|  | expected_arg_names = ["pixel_values"] | 
					
						
						|  | self.assertListEqual(arg_names[:1], expected_arg_names) | 
					
						
						|  |  | 
					
						
						|  | def test_config_save_pretrained(self): | 
					
						
						|  | config_class = self.config_class | 
					
						
						|  | config_first = config_class(out_indices=[0, 1, 2, 3]) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | config_first.save_pretrained(tmpdirname) | 
					
						
						|  | config_second = self.config_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | self.assertEqual(config_second.to_dict(), config_first.to_dict()) | 
					
						
						|  |  | 
					
						
						|  | def test_channels(self): | 
					
						
						|  | config, _ = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  |  | 
					
						
						|  | for model_class in self.all_model_classes: | 
					
						
						|  | model = model_class(config) | 
					
						
						|  | self.assertEqual(len(model.channels), len(config.out_features)) | 
					
						
						|  | num_features = model.num_features | 
					
						
						|  | out_indices = [config.stage_names.index(feat) for feat in config.out_features] | 
					
						
						|  | out_channels = [num_features[idx] for idx in out_indices] | 
					
						
						|  | self.assertListEqual(model.channels, out_channels) | 
					
						
						|  |  | 
					
						
						|  | new_config = copy.deepcopy(config) | 
					
						
						|  | new_config.out_features = None | 
					
						
						|  | model = model_class(new_config) | 
					
						
						|  | self.assertEqual(len(model.channels), 1) | 
					
						
						|  | self.assertListEqual(model.channels, [num_features[-1]]) | 
					
						
						|  |  | 
					
						
						|  | new_config = copy.deepcopy(config) | 
					
						
						|  | new_config.out_indices = None | 
					
						
						|  | model = model_class(new_config) | 
					
						
						|  | self.assertEqual(len(model.channels), 1) | 
					
						
						|  | self.assertListEqual(model.channels, [num_features[-1]]) | 
					
						
						|  |  | 
					
						
						|  | def test_create_from_modified_config(self): | 
					
						
						|  | config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  |  | 
					
						
						|  | for model_class in self.all_model_classes: | 
					
						
						|  | model = model_class(config) | 
					
						
						|  | model.to(torch_device) | 
					
						
						|  | model.eval() | 
					
						
						|  | result = model(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  | self.assertEqual(len(result.feature_maps), len(config.out_features)) | 
					
						
						|  | self.assertEqual(len(model.channels), len(config.out_features)) | 
					
						
						|  | self.assertEqual(len(result.feature_maps), len(config.out_indices)) | 
					
						
						|  | self.assertEqual(len(model.channels), len(config.out_indices)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | modified_config = copy.deepcopy(config) | 
					
						
						|  | modified_config.out_features = None | 
					
						
						|  | model = model_class(modified_config) | 
					
						
						|  | model.to(torch_device) | 
					
						
						|  | model.eval() | 
					
						
						|  | result = model(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  | self.assertEqual(len(result.feature_maps), 1) | 
					
						
						|  | self.assertEqual(len(model.channels), 1) | 
					
						
						|  |  | 
					
						
						|  | modified_config = copy.deepcopy(config) | 
					
						
						|  | modified_config.out_indices = None | 
					
						
						|  | model = model_class(modified_config) | 
					
						
						|  | model.to(torch_device) | 
					
						
						|  | model.eval() | 
					
						
						|  | result = model(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  | self.assertEqual(len(result.feature_maps), 1) | 
					
						
						|  | self.assertEqual(len(model.channels), 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | modified_config = copy.deepcopy(config) | 
					
						
						|  | modified_config.use_pretrained_backbone = False | 
					
						
						|  | model = model_class(modified_config) | 
					
						
						|  | model.to(torch_device) | 
					
						
						|  | model.eval() | 
					
						
						|  | result = model(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  | def test_backbone_common_attributes(self): | 
					
						
						|  | config, _ = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  |  | 
					
						
						|  | for backbone_class in self.all_model_classes: | 
					
						
						|  | backbone = backbone_class(config) | 
					
						
						|  |  | 
					
						
						|  | self.assertTrue(hasattr(backbone, "backbone_type")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "stage_names")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "num_features")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "out_indices")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "out_features")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "out_feature_channels")) | 
					
						
						|  | self.assertTrue(hasattr(backbone, "channels")) | 
					
						
						|  |  | 
					
						
						|  | self.assertIsInstance(backbone.backbone_type, BackboneType) | 
					
						
						|  |  | 
					
						
						|  | self.assertIsNotNone(backbone.num_features) | 
					
						
						|  | self.assertTrue(len(backbone.channels) == len(backbone.out_indices)) | 
					
						
						|  | self.assertTrue(len(backbone.stage_names) == len(backbone.num_features)) | 
					
						
						|  | self.assertTrue(len(backbone.channels) <= len(backbone.num_features)) | 
					
						
						|  | self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names)) | 
					
						
						|  |  | 
					
						
						|  | def test_backbone_outputs(self): | 
					
						
						|  | config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  | batch_size = inputs_dict["pixel_values"].shape[0] | 
					
						
						|  |  | 
					
						
						|  | for backbone_class in self.all_model_classes: | 
					
						
						|  | backbone = backbone_class(config) | 
					
						
						|  | backbone.to(torch_device) | 
					
						
						|  | backbone.eval() | 
					
						
						|  |  | 
					
						
						|  | outputs = backbone(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.assertIsInstance(outputs.feature_maps, tuple) | 
					
						
						|  | self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) | 
					
						
						|  | for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): | 
					
						
						|  | self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) | 
					
						
						|  | self.assertIsNone(outputs.hidden_states) | 
					
						
						|  | self.assertIsNone(outputs.attentions) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = backbone(**inputs_dict, output_hidden_states=True) | 
					
						
						|  | self.assertIsNotNone(outputs.hidden_states) | 
					
						
						|  | self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) | 
					
						
						|  | for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels): | 
					
						
						|  | self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.has_attentions: | 
					
						
						|  | outputs = backbone(**inputs_dict, output_attentions=True) | 
					
						
						|  | self.assertIsNotNone(outputs.attentions) | 
					
						
						|  |  | 
					
						
						|  | def test_backbone_stage_selection(self): | 
					
						
						|  | config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | 
					
						
						|  | batch_size = inputs_dict["pixel_values"].shape[0] | 
					
						
						|  |  | 
					
						
						|  | for backbone_class in self.all_model_classes: | 
					
						
						|  | config.out_indices = [-2, -1] | 
					
						
						|  | backbone = backbone_class(config) | 
					
						
						|  | backbone.to(torch_device) | 
					
						
						|  | backbone.eval() | 
					
						
						|  |  | 
					
						
						|  | outputs = backbone(**inputs_dict) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.assertIsInstance(outputs.feature_maps, tuple) | 
					
						
						|  | self.assertTrue(len(outputs.feature_maps) == 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | channels_from_stage_names = [ | 
					
						
						|  | backbone.out_feature_channels[name] for name in backbone.stage_names if name in backbone.out_features | 
					
						
						|  | ] | 
					
						
						|  | self.assertEqual(backbone.channels, channels_from_stage_names) | 
					
						
						|  | for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): | 
					
						
						|  | self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) | 
					
						
						|  |  |