|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
|
|
import numpy as np |
|
|
import pytest |
|
|
|
|
|
from transformers import ( |
|
|
MODEL_MAPPING, |
|
|
TF_MODEL_MAPPING, |
|
|
TOKENIZER_MAPPING, |
|
|
ImageFeatureExtractionPipeline, |
|
|
is_tf_available, |
|
|
is_torch_available, |
|
|
is_vision_available, |
|
|
pipeline, |
|
|
) |
|
|
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch |
|
|
|
|
|
|
|
|
if is_torch_available(): |
|
|
import torch |
|
|
|
|
|
if is_tf_available(): |
|
|
import tensorflow as tf |
|
|
|
|
|
if is_vision_available(): |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
|
|
def prepare_img(): |
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
|
return image |
|
|
|
|
|
|
|
|
@is_pipeline_test |
|
|
class ImageFeatureExtractionPipelineTests(unittest.TestCase): |
|
|
model_mapping = MODEL_MAPPING |
|
|
tf_model_mapping = TF_MODEL_MAPPING |
|
|
|
|
|
@require_torch |
|
|
def test_small_model_pt(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img) |
|
|
self.assertEqual( |
|
|
nested_simplify(outputs[0][0]), |
|
|
[-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) |
|
|
|
|
|
@require_torch |
|
|
def test_small_model_w_pooler_pt(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="pt" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, pool=True) |
|
|
self.assertEqual( |
|
|
nested_simplify(outputs[0]), |
|
|
[-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) |
|
|
|
|
|
@require_tf |
|
|
def test_small_model_tf(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img) |
|
|
self.assertEqual( |
|
|
nested_simplify(outputs[0][0]), |
|
|
[-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) |
|
|
|
|
|
@require_tf |
|
|
def test_small_model_w_pooler_tf(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, pool=True) |
|
|
self.assertEqual( |
|
|
nested_simplify(outputs[0]), |
|
|
[-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) |
|
|
|
|
|
@require_torch |
|
|
def test_image_processing_small_model_pt(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" |
|
|
) |
|
|
|
|
|
|
|
|
image_processor_kwargs = {"size": {"height": 300, "width": 300}} |
|
|
img = prepare_img() |
|
|
with pytest.raises(ValueError): |
|
|
|
|
|
feature_extractor(img, image_processor_kwargs=image_processor_kwargs) |
|
|
|
|
|
image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]} |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs) |
|
|
self.assertEqual(np.squeeze(outputs).shape, (226, 32)) |
|
|
|
|
|
|
|
|
outputs = feature_extractor(img, pool=True) |
|
|
self.assertEqual(np.squeeze(outputs).shape, (32,)) |
|
|
|
|
|
@require_tf |
|
|
def test_image_processing_small_model_tf(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf" |
|
|
) |
|
|
|
|
|
|
|
|
image_processor_kwargs = {"size": {"height": 300, "width": 300}} |
|
|
img = prepare_img() |
|
|
with pytest.raises(ValueError): |
|
|
|
|
|
feature_extractor(img, image_processor_kwargs=image_processor_kwargs) |
|
|
|
|
|
image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]} |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs) |
|
|
self.assertEqual(np.squeeze(outputs).shape, (226, 32)) |
|
|
|
|
|
|
|
|
outputs = feature_extractor(img, pool=True) |
|
|
self.assertEqual(np.squeeze(outputs).shape, (32,)) |
|
|
|
|
|
@require_torch |
|
|
def test_return_tensors_pt(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, return_tensors=True) |
|
|
self.assertTrue(torch.is_tensor(outputs)) |
|
|
|
|
|
@require_tf |
|
|
def test_return_tensors_tf(self): |
|
|
feature_extractor = pipeline( |
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf" |
|
|
) |
|
|
img = prepare_img() |
|
|
outputs = feature_extractor(img, return_tensors=True) |
|
|
self.assertTrue(tf.is_tensor(outputs)) |
|
|
|
|
|
def get_test_pipeline( |
|
|
self, |
|
|
model, |
|
|
tokenizer=None, |
|
|
image_processor=None, |
|
|
feature_extractor=None, |
|
|
processor=None, |
|
|
torch_dtype="float32", |
|
|
): |
|
|
if image_processor is None: |
|
|
self.skipTest(reason="No image processor") |
|
|
|
|
|
elif type(model.config) in TOKENIZER_MAPPING: |
|
|
self.skipTest( |
|
|
reason="This is a bimodal model, we need to find a more consistent way to switch on those models." |
|
|
) |
|
|
|
|
|
elif model.config.is_encoder_decoder: |
|
|
self.skipTest( |
|
|
"""encoder_decoder models are trickier for this pipeline. |
|
|
Do we want encoder + decoder inputs to get some features? |
|
|
Do we want encoder only features ? |
|
|
For now ignore those. |
|
|
""" |
|
|
) |
|
|
|
|
|
feature_extractor_pipeline = ImageFeatureExtractionPipeline( |
|
|
model=model, |
|
|
tokenizer=tokenizer, |
|
|
feature_extractor=feature_extractor, |
|
|
image_processor=image_processor, |
|
|
processor=processor, |
|
|
torch_dtype=torch_dtype, |
|
|
) |
|
|
img = prepare_img() |
|
|
return feature_extractor_pipeline, [img, img] |
|
|
|
|
|
def run_pipeline_test(self, feature_extractor, examples): |
|
|
imgs = examples |
|
|
outputs = feature_extractor(imgs[0]) |
|
|
|
|
|
self.assertEqual(len(outputs), 1) |
|
|
|
|
|
outputs = feature_extractor(imgs) |
|
|
self.assertEqual(len(outputs), 2) |
|
|
|