StivenLancheros commited on
Commit
cb22fbc
·
1 Parent(s): 10c368e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: bert_chinese_mc_base-BioNER-EN-ZH
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # bert_chinese_mc_base-BioNER-EN-ZH
18
+
19
+ This model is a fine-tuned version of [StivenLancheros/bert_chinese_mc_base-BioNER-EN](https://huggingface.co/StivenLancheros/bert_chinese_mc_base-BioNER-EN) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3611
22
+ - Precision: 0.6967
23
+ - Recall: 0.7980
24
+ - F1: 0.7439
25
+ - Accuracy: 0.9215
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 0.4895 | 1.0 | 680 | 0.6248 | 0.4389 | 0.6486 | 0.5235 | 0.8301 |
57
+ | 0.3569 | 2.0 | 1360 | 0.6207 | 0.4931 | 0.7204 | 0.5854 | 0.8481 |
58
+ | 0.2778 | 3.0 | 2040 | 0.4876 | 0.5723 | 0.7371 | 0.6443 | 0.8864 |
59
+ | 0.2558 | 4.0 | 2720 | 0.4496 | 0.5882 | 0.7446 | 0.6572 | 0.8892 |
60
+ | 0.2363 | 5.0 | 3400 | 0.4674 | 0.5845 | 0.7619 | 0.6615 | 0.8892 |
61
+ | 0.2129 | 6.0 | 4080 | 0.4311 | 0.6148 | 0.7674 | 0.6827 | 0.9005 |
62
+ | 0.2019 | 7.0 | 4760 | 0.3930 | 0.6428 | 0.7710 | 0.7011 | 0.9103 |
63
+ | 0.1912 | 8.0 | 5440 | 0.4031 | 0.6438 | 0.7815 | 0.7060 | 0.9095 |
64
+ | 0.1741 | 9.0 | 6120 | 0.3914 | 0.6506 | 0.7765 | 0.7080 | 0.9101 |
65
+ | 0.1727 | 10.0 | 6800 | 0.3808 | 0.6530 | 0.7814 | 0.7114 | 0.9117 |
66
+ | 0.1625 | 11.0 | 7480 | 0.4047 | 0.6545 | 0.7828 | 0.7129 | 0.9106 |
67
+ | 0.1546 | 12.0 | 8160 | 0.3803 | 0.6543 | 0.7849 | 0.7137 | 0.9115 |
68
+ | 0.1515 | 13.0 | 8840 | 0.3635 | 0.6828 | 0.7979 | 0.7359 | 0.9217 |
69
+ | 0.1415 | 14.0 | 9520 | 0.3872 | 0.6718 | 0.7962 | 0.7287 | 0.9160 |
70
+ | 0.1425 | 15.0 | 10200 | 0.3699 | 0.6879 | 0.7939 | 0.7371 | 0.9193 |
71
+ | 0.1327 | 16.0 | 10880 | 0.3762 | 0.6869 | 0.7977 | 0.7382 | 0.9184 |
72
+ | 0.1307 | 17.0 | 11560 | 0.3732 | 0.6822 | 0.8013 | 0.7369 | 0.9181 |
73
+ | 0.1309 | 18.0 | 12240 | 0.3629 | 0.6956 | 0.7970 | 0.7428 | 0.9208 |
74
+ | 0.1268 | 19.0 | 12920 | 0.3643 | 0.6930 | 0.7990 | 0.7423 | 0.9210 |
75
+ | 0.1257 | 20.0 | 13600 | 0.3611 | 0.6967 | 0.7980 | 0.7439 | 0.9215 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.27.2
81
+ - Pytorch 1.13.0+cu117
82
+ - Datasets 2.7.1
83
+ - Tokenizers 0.13.2