StivenLancheros
commited on
Commit
•
2971a65
1
Parent(s):
17ed1ac
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: bert-base-arabert-BioNER-EN-AR
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bert-base-arabert-BioNER-EN-AR
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [StivenLancheros/bert-base-arabert-BioNER-EN](https://huggingface.co/StivenLancheros/bert-base-arabert-BioNER-EN) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4250
|
22 |
+
- Precision: 0.7143
|
23 |
+
- Recall: 0.8209
|
24 |
+
- F1: 0.7639
|
25 |
+
- Accuracy: 0.9197
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.6376 | 1.0 | 680 | 0.7457 | 0.4379 | 0.6384 | 0.5195 | 0.8242 |
|
57 |
+
| 0.4549 | 2.0 | 1360 | 0.7120 | 0.4878 | 0.7113 | 0.5787 | 0.8346 |
|
58 |
+
| 0.3214 | 3.0 | 2040 | 0.5576 | 0.5676 | 0.7529 | 0.6473 | 0.8749 |
|
59 |
+
| 0.2883 | 4.0 | 2720 | 0.5304 | 0.5916 | 0.7745 | 0.6708 | 0.8808 |
|
60 |
+
| 0.2596 | 5.0 | 3400 | 0.4942 | 0.6117 | 0.7884 | 0.6889 | 0.8906 |
|
61 |
+
| 0.2168 | 6.0 | 4080 | 0.5229 | 0.6204 | 0.7977 | 0.6979 | 0.8898 |
|
62 |
+
| 0.2105 | 7.0 | 4760 | 0.4630 | 0.6501 | 0.7935 | 0.7147 | 0.8999 |
|
63 |
+
| 0.1889 | 8.0 | 5440 | 0.5048 | 0.6407 | 0.8066 | 0.7141 | 0.8958 |
|
64 |
+
| 0.1714 | 9.0 | 6120 | 0.4538 | 0.6909 | 0.7986 | 0.7409 | 0.9105 |
|
65 |
+
| 0.1626 | 10.0 | 6800 | 0.4433 | 0.6912 | 0.8070 | 0.7446 | 0.9130 |
|
66 |
+
| 0.1559 | 11.0 | 7480 | 0.4282 | 0.7006 | 0.8054 | 0.7493 | 0.9144 |
|
67 |
+
| 0.1451 | 12.0 | 8160 | 0.4475 | 0.6978 | 0.8150 | 0.7519 | 0.9135 |
|
68 |
+
| 0.1384 | 13.0 | 8840 | 0.4535 | 0.6928 | 0.8215 | 0.7517 | 0.9145 |
|
69 |
+
| 0.1331 | 14.0 | 9520 | 0.4250 | 0.7143 | 0.8209 | 0.7639 | 0.9197 |
|
70 |
+
| 0.1282 | 15.0 | 10200 | 0.4350 | 0.7108 | 0.8237 | 0.7631 | 0.9200 |
|
71 |
+
| 0.1216 | 16.0 | 10880 | 0.4385 | 0.7096 | 0.8231 | 0.7621 | 0.9188 |
|
72 |
+
| 0.1195 | 17.0 | 11560 | 0.4376 | 0.7134 | 0.8275 | 0.7662 | 0.9204 |
|
73 |
+
| 0.1187 | 18.0 | 12240 | 0.4461 | 0.7092 | 0.8297 | 0.7647 | 0.9183 |
|
74 |
+
| 0.1159 | 19.0 | 12920 | 0.4359 | 0.7215 | 0.8264 | 0.7704 | 0.9219 |
|
75 |
+
| 0.1121 | 20.0 | 13600 | 0.4358 | 0.7198 | 0.8264 | 0.7694 | 0.9217 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.27.2
|
81 |
+
- Pytorch 1.13.0+cu117
|
82 |
+
- Datasets 2.7.1
|
83 |
+
- Tokenizers 0.13.2
|