Stern5497 commited on
Commit
4a2cfa5
1 Parent(s): 4617e65

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:100K<n<1M
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: FacebookAI/xlm-roberta-base
11
+ widget:
12
+ - source_sentence: who does carol end up with on er
13
+ sentences:
14
+ - who does sarah end up with in must love dogs
15
+ - when does season 7 once upon a time start
16
+ - when did the wwe hall of fame start
17
+ - source_sentence: who is mr blue in the hulk movie
18
+ sentences:
19
+ - who played the zither in the third man
20
+ - who plays tiana s mom in once upon a time
21
+ - when did 9 11 start being called patriot day
22
+ - source_sentence: who do you play as in bioshock 1
23
+ sentences:
24
+ - who does brad pitt play in war machine
25
+ - where does gone in 60 seconds take place
26
+ - in 1864 the republicans changed their name to
27
+ - source_sentence: when did the xbox one s came out
28
+ sentences:
29
+ - when did the first generation iphone come out
30
+ - what is the meaning of cdi in motorcycle
31
+ - who sang in the court of the crimson king
32
+ - source_sentence: how big is 1 acre in square feet
33
+ sentences:
34
+ - how many square feet is one acre of land
35
+ - what type of bonding is present in alloys
36
+ - who wrote skinny love bon iver and birdy
37
+ pipeline_tag: sentence-similarity
38
+ ---
39
+
40
+ # SentenceTransformer based on FacebookAI/xlm-roberta-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("Stern5497/nir-24-xlm-roberta-base")
87
+ # Run inference
88
+ sentences = [
89
+ 'how big is 1 acre in square feet',
90
+ 'how many square feet is one acre of land',
91
+ 'what type of bonding is present in alloys',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 164,848 training samples
147
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | sentence_0 | sentence_1 | sentence_2 |
150
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
151
+ | type | string | string | string |
152
+ | details | <ul><li>min: 10 tokens</li><li>mean: 13.28 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 131 tokens</li><li>mean: 163.32 tokens</li><li>max: 231 tokens</li></ul> | <ul><li>min: 133 tokens</li><li>mean: 164.04 tokens</li><li>max: 290 tokens</li></ul> |
153
+ * Samples:
154
+ | sentence_0 | sentence_1 | sentence_2 |
155
+ |:----------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
156
+ | <code>when did the song say my name come out</code> | <code>{'title': '', 'text': 'Say My Name "Say My Name" is a song by the American girl group Destiny\'s Child from their second studio album "The Writing\'s on the Wall" (1999). It was written by Beyoncé Knowles, LeToya Luckett, LaTavia Roberson and Kelly Rowland along with LaShawn Daniels, Fred Jerkins III and Rodney "Darkchild" Jerkins, featuring production by the latter. The song was released by Columbia Records as the album\'s third single on November 7, 1999, and marked the introduction of the group\'s second line-up with the newly-added members Michelle Williams and Farrah Franklin. The single is the most successful of the four releases'}</code> | <code>{'title': '', 'text': 'Romans 1 Romans 1 is the first chapter of the Epistle to the Romans in the New Testament of the Christian Bible. It is authored by Paul the Apostle, but written by an amanuensis, Tertius, while Paul was in Corinth, in winter of AD 57-58. records that Paul stayed in Greece, probably Corinth, for three months. Paul wrote to the Roman Christians in order to give them a substantial resume of his theology. The New King James Version organises this chapter as follows: The letter is addressed "to all in Rome who are loved by God and called to be'}</code> |
157
+ | <code>what is another name for the persian empire</code> | <code>{'title': '', 'text': 'in the neighbouring Ottoman Empire. Persian Empire The Persian Empire (, translit. "", lit. \'Imperial Iran\') refers to any of a series of imperial dynasties that were centred in Persia/Iran from the 6th century BC Achaemenid Empire era to the 20th century AD in the Qajar dynasty era. The first dynasty of the Persian Empire was created by Achaemenids, established by Cyrus the Great in 550 BC with the conquest of Median, Lydian and Babylonian empires. It covered much of the Ancient world when it was conquered by Alexander the Great. Persepolis is the most famous historical site related to'}</code> | <code>{'title': '', 'text': 'squad leader is staff sergeant (E-6, or OR-6) and in the United States Marine Corps the TO rank is sergeant (E-5, or OR-5), though a corporal may also act as a squad leader in the absence of sufficient numbers of sergeants. Squad leaders of crew-served weapons squads range from corporal through staff sergeant, depending upon the branch of service and type of squad. In some armies, notably those of the British Commonwealth, in which the term section is used for units of this size, the NCO in charge, which in the British Army and Royal Marines is normally a Corporal'}</code> |
158
+ | <code>what is the unit of measurement in australia</code> | <code>{'title': '', 'text': 'Metrication in Australia Metrication in Australia effectively began in 1966 with the conversion to decimal currency under the auspices of the Decimal Currency Board. The conversion of measurements—metrication—commenced subsequently in 1971, under the direction of the Metric Conversion Board and actively proceeded until the Board was disbanded in 1981. Before 1970, Australia mostly used the imperial system for measurement, which the Australian colonies had inherited from the United Kingdom. Between 1970 and 1988, imperial units were withdrawn from general legal use and replaced with SI metric units, facilitated through legislation and government agencies. SI units are now the sole legal'}</code> | <code>{'title': '', 'text': 'squad of several teams, but did not see NFL action until the 1998 NFL season with the Miami Dolphins. He then played for the Green Bay Packers and Cleveland Browns, and was a member of the New York Giants but did not play due to back injuries. He spent time in NFL Europe, where he played for the Scottish Claymores. Barry Stokes (American football) Barry Wade Stokes (born December 20, 1973) is a former American football offensive lineman of the National Football League. He was signed by the Detroit Lions as an undrafted free agent in 1996. He played college'}</code> |
159
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
+ ```json
161
+ {
162
+ "scale": 20.0,
163
+ "similarity_fct": "cos_sim"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `num_train_epochs`: 1
173
+ - `fp16`: True
174
+ - `batch_sampler`: no_duplicates
175
+ - `multi_dataset_batch_sampler`: round_robin
176
+
177
+ #### All Hyperparameters
178
+ <details><summary>Click to expand</summary>
179
+
180
+ - `overwrite_output_dir`: False
181
+ - `do_predict`: False
182
+ - `prediction_loss_only`: True
183
+ - `per_device_train_batch_size`: 16
184
+ - `per_device_eval_batch_size`: 16
185
+ - `per_gpu_train_batch_size`: None
186
+ - `per_gpu_eval_batch_size`: None
187
+ - `gradient_accumulation_steps`: 1
188
+ - `eval_accumulation_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 1
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `no_cuda`: False
209
+ - `use_cpu`: False
210
+ - `use_mps_device`: False
211
+ - `seed`: 42
212
+ - `data_seed`: None
213
+ - `jit_mode_eval`: False
214
+ - `use_ipex`: False
215
+ - `bf16`: False
216
+ - `fp16`: True
217
+ - `fp16_opt_level`: O1
218
+ - `half_precision_backend`: auto
219
+ - `bf16_full_eval`: False
220
+ - `fp16_full_eval`: False
221
+ - `tf32`: None
222
+ - `local_rank`: 0
223
+ - `ddp_backend`: None
224
+ - `tpu_num_cores`: None
225
+ - `tpu_metrics_debug`: False
226
+ - `debug`: []
227
+ - `dataloader_drop_last`: False
228
+ - `dataloader_num_workers`: 0
229
+ - `dataloader_prefetch_factor`: None
230
+ - `past_index`: -1
231
+ - `disable_tqdm`: False
232
+ - `remove_unused_columns`: True
233
+ - `label_names`: None
234
+ - `load_best_model_at_end`: False
235
+ - `ignore_data_skip`: False
236
+ - `fsdp`: []
237
+ - `fsdp_min_num_params`: 0
238
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
239
+ - `fsdp_transformer_layer_cls_to_wrap`: None
240
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
241
+ - `deepspeed`: None
242
+ - `label_smoothing_factor`: 0.0
243
+ - `optim`: adamw_torch
244
+ - `optim_args`: None
245
+ - `adafactor`: False
246
+ - `group_by_length`: False
247
+ - `length_column_name`: length
248
+ - `ddp_find_unused_parameters`: None
249
+ - `ddp_bucket_cap_mb`: None
250
+ - `ddp_broadcast_buffers`: False
251
+ - `dataloader_pin_memory`: True
252
+ - `dataloader_persistent_workers`: False
253
+ - `skip_memory_metrics`: True
254
+ - `use_legacy_prediction_loop`: False
255
+ - `push_to_hub`: False
256
+ - `resume_from_checkpoint`: None
257
+ - `hub_model_id`: None
258
+ - `hub_strategy`: every_save
259
+ - `hub_private_repo`: False
260
+ - `hub_always_push`: False
261
+ - `gradient_checkpointing`: False
262
+ - `gradient_checkpointing_kwargs`: None
263
+ - `include_inputs_for_metrics`: False
264
+ - `fp16_backend`: auto
265
+ - `push_to_hub_model_id`: None
266
+ - `push_to_hub_organization`: None
267
+ - `mp_parameters`:
268
+ - `auto_find_batch_size`: False
269
+ - `full_determinism`: False
270
+ - `torchdynamo`: None
271
+ - `ray_scope`: last
272
+ - `ddp_timeout`: 1800
273
+ - `torch_compile`: False
274
+ - `torch_compile_backend`: None
275
+ - `torch_compile_mode`: None
276
+ - `dispatch_batches`: None
277
+ - `split_batches`: None
278
+ - `include_tokens_per_second`: False
279
+ - `include_num_input_tokens_seen`: False
280
+ - `neftune_noise_alpha`: None
281
+ - `optim_target_modules`: None
282
+ - `batch_sampler`: no_duplicates
283
+ - `multi_dataset_batch_sampler`: round_robin
284
+
285
+ </details>
286
+
287
+ ### Training Logs
288
+ | Epoch | Step | Training Loss |
289
+ |:------:|:-----:|:-------------:|
290
+ | 0.0485 | 500 | 1.5522 |
291
+ | 0.0971 | 1000 | 0.816 |
292
+ | 0.1456 | 1500 | 0.6951 |
293
+ | 0.1941 | 2000 | 0.6024 |
294
+ | 0.2426 | 2500 | 0.5464 |
295
+ | 0.2912 | 3000 | 0.5076 |
296
+ | 0.3397 | 3500 | 0.459 |
297
+ | 0.3882 | 4000 | 0.4633 |
298
+ | 0.4368 | 4500 | 0.4309 |
299
+ | 0.4853 | 5000 | 0.4081 |
300
+ | 0.5338 | 5500 | 0.3783 |
301
+ | 0.5824 | 6000 | 0.3624 |
302
+ | 0.6309 | 6500 | 0.3467 |
303
+ | 0.6794 | 7000 | 0.3358 |
304
+ | 0.7279 | 7500 | 0.3279 |
305
+ | 0.7765 | 8000 | 0.3062 |
306
+ | 0.8250 | 8500 | 0.3029 |
307
+ | 0.8735 | 9000 | 0.305 |
308
+ | 0.9221 | 9500 | 0.2927 |
309
+ | 0.9706 | 10000 | 0.272 |
310
+ | 1.0 | 10303 | - |
311
+
312
+
313
+ ### Framework Versions
314
+ - Python: 3.10.13
315
+ - Sentence Transformers: 3.0.0
316
+ - Transformers: 4.39.3
317
+ - PyTorch: 2.1.2
318
+ - Accelerate: 0.29.3
319
+ - Datasets: 2.18.0
320
+ - Tokenizers: 0.15.2
321
+
322
+ ## Citation
323
+
324
+ ### BibTeX
325
+
326
+ #### Sentence Transformers
327
+ ```bibtex
328
+ @inproceedings{reimers-2019-sentence-bert,
329
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
330
+ author = "Reimers, Nils and Gurevych, Iryna",
331
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
332
+ month = "11",
333
+ year = "2019",
334
+ publisher = "Association for Computational Linguistics",
335
+ url = "https://arxiv.org/abs/1908.10084",
336
+ }
337
+ ```
338
+
339
+ #### MultipleNegativesRankingLoss
340
+ ```bibtex
341
+ @misc{henderson2017efficient,
342
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
343
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
344
+ year={2017},
345
+ eprint={1705.00652},
346
+ archivePrefix={arXiv},
347
+ primaryClass={cs.CL}
348
+ }
349
+ ```
350
+
351
+ <!--
352
+ ## Glossary
353
+
354
+ *Clearly define terms in order to be accessible across audiences.*
355
+ -->
356
+
357
+ <!--
358
+ ## Model Card Authors
359
+
360
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
361
+ -->
362
+
363
+ <!--
364
+ ## Model Card Contact
365
+
366
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
367
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.39.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6129911890bcb271b198bb360e59e8b3f2efd886bdeb6a6f044b7a683a2fd72
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1cc44ad7faaeec47241864835473fd5403f2da94673f3f764a77ebcb0a803ec
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }