update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,11 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 2.
|
35 |
-
- Rouge1: 0.
|
36 |
-
- Rouge2: 0.
|
37 |
-
- Rougel: 0.
|
38 |
-
- Rougelsum: 0.
|
39 |
- Gen Len: 19.0
|
40 |
|
41 |
## Model description
|
@@ -56,22 +56,20 @@ More information needed
|
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
- learning_rate: 2e-05
|
59 |
-
- train_batch_size:
|
60 |
-
- eval_batch_size:
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
-
- num_epochs:
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
71 |
-
| No log | 1.0 |
|
72 |
-
| No log | 2.0 |
|
73 |
-
| No log | 3.0 | 186 | 2.6432 | 0.1384 | 0.0486 | 0.1146 | 0.1146 | 19.0 |
|
74 |
-
| No log | 4.0 | 248 | 2.6270 | 0.1358 | 0.0478 | 0.1138 | 0.1135 | 19.0 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
+
value: 0.1383
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 2.5953
|
35 |
+
- Rouge1: 0.1383
|
36 |
+
- Rouge2: 0.0487
|
37 |
+
- Rougel: 0.1135
|
38 |
+
- Rougelsum: 0.1132
|
39 |
- Gen Len: 19.0
|
40 |
|
41 |
## Model description
|
|
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
- learning_rate: 2e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 2
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
71 |
+
| No log | 1.0 | 124 | 2.6810 | 0.1312 | 0.0415 | 0.1076 | 0.1077 | 19.0 |
|
72 |
+
| No log | 2.0 | 248 | 2.5953 | 0.1383 | 0.0487 | 0.1135 | 0.1132 | 19.0 |
|
|
|
|
|
73 |
|
74 |
|
75 |
### Framework versions
|