import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Load the model | |
model = tf.keras.models.load_model('nsfw_classifier.h5') | |
# Load an image file to test, resizing it to 150x150 pixels (as required by this model) | |
img = image.load_img('', target_size=(512, 512)) | |
# Convert the image to a numpy array | |
img_array = image.img_to_array(img) | |
# Add a fourth dimension to the image (since Keras expects a list of images, not a single image) | |
img_array = np.expand_dims(img_array, axis=0)/ | |
# Normalize the image | |
img_array /= 255. | |
# Use the model to predict the image's class | |
pred = model.predict(img_array) | |
# The model returns a probability between 0 and 1 | |
# You can convert this to the class label like this: | |
label = 'NSFW' if pred[0][0] > 0.5 else 'SFW' | |
print(pred[0][0]) | |
print("The image is classified as:", label) | |