StKirill commited on
Commit
4dc5913
1 Parent(s): dd762bc
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.47 +/- 68.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6db3282170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6db3282200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6db3282290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6db3282320>", "_build": "<function ActorCriticPolicy._build at 0x7e6db32823b0>", "forward": "<function ActorCriticPolicy.forward at 0x7e6db3282440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6db32824d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6db3282560>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6db32825f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6db3282680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6db3282710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6db32827a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6db327b100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689769680969223736, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALpdK74CQwU/9iM6Pjyopr5s/IE99vw4OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI20j5bhWKMAWyUTS4BjAF0lEdAoe9iKP4mC3V9lChoBkdAcQUdbxEv02gHTUcBaAhHQKHxBHe7+UB1fZQoaAZHQHFLV2q1gIBoB01gAWgIR0Ch8iBKcurZdX2UKGgGR0BvQftWuHN5aAdNUAFoCEdAofMuLP2PDHV9lChoBkdAbbwYGdI5HWgHTR0BaAhHQKH0O8AaNuN1fZQoaAZHQHArc+V1Oj9oB00VAWgIR0Ch9jplSS/1dX2UKGgGR0BTjA0Kqn3taAdL3WgIR0Ch9ym8dxQ0dX2UKGgGR0BwOYNMGorGaAdNKQFoCEdAofhe5paibnV9lChoBkdAbvHodMj/uWgHTRcBaAhHQKH6gwwCbMJ1fZQoaAZHQHHf3k1dgOVoB01jAWgIR0Ch/CgUlAu7dX2UKGgGR0Bwfrnp0OmSaAdNXQFoCEdAof3M1XNkfHV9lChoBkdAVZajzqbBoGgHTegDaAhHQKIB8DbrTph1fZQoaAZHQHAZSb2Dg65oB00pAWgIR0CiA4eumrKedX2UKGgGR0BwOvgCOmzjaAdNTQFoCEdAogSQBtDUmXV9lChoBkdAcCzXokiUxGgHTTwBaAhHQKIFlhvR7Z51fZQoaAZHQG7V2rXDm8xoB01mAWgIR0CiBrGDDjzadX2UKGgGR0BucXHq/ub7aAdNKwFoCEdAoghDW3BpH3V9lChoBkdAcQZm5UcXFmgHTQgBaAhHQKIJGUvf0mN1fZQoaAZHQG9bivovBadoB00uAWgIR0CiChOQZGaydX2UKGgGR0BwrD8jzI3jaAdNHAFoCEdAoguWNJe3QXV9lChoBkdAcUJYHxBmgGgHTSkBaAhHQKIMf3u/k/91fZQoaAZHQG+HhKL876poB00cAWgIR0CiDWv8Q7LddX2UKGgGR0Bx/W0BwMpgaAdNPAFoCEdAog5jXxvvSnV9lChoBkdAbgaF5fMOgGgHTb4BaAhHQKIQaZflZHN1fZQoaAZHQFWG0yP+4spoB03oA2gIR0CiFKJUPxx2dX2UKGgGR0Bx8uXzDn/2aAdNlQFoCEdAohZOsDGLk3V9lChoBkdAcquzt1IRRWgHTSwBaAhHQKIYfxOLzf91fZQoaAZHQHB6yqQzUI9oB02+AWgIR0CiGntq59VndX2UKGgGR0BwKcdq+JxeaAdNLAFoCEdAohwDWVeKK3V9lChoBkdAcdWd3Sro4mgHTXkBaAhHQKIee46Oo5x1fZQoaAZHQG+KiwSrYGtoB01IAWgIR0CiH4KMFUyYdX2UKGgGR0BwewnTiKixaAdNbQFoCEdAoiCnm3fAK3V9lChoBkdAb8HJFLFn7GgHTUABaAhHQKIiRbvgFX91fZQoaAZHQG9JSrPt2LZoB01dAWgIR0CiI1Pmgam5dX2UKGgGR0Bufk3qAz55aAdNFgFoCEdAoiQzkGRmsnV9lChoBkdASijZUT+NtWgHTQcBaAhHQKIlmvicXnB1fZQoaAZHQHBlafBeok1oB00UAWgIR0CiJnmK64DtdX2UKGgGR0BwcZ1r6+FlaAdNIQFoCEdAoidc5sCT2XV9lChoBkdAcZsZr56+nWgHTUYBaAhHQKIoY4p+c6N1fZQoaAZHQHDUFM/QjUxoB01IAWgIR0CiKghTwUg0dX2UKGgGR0Buyx6po9LYaAdNHgFoCEdAoirrp7kXDXV9lChoBkdAb9uOinHeamgHTRkBaAhHQKIrz2jfvWp1fZQoaAZHQHFMbqlgtvpoB00uAWgIR0CiLVz/p+tsdX2UKGgGR0BwrT3ai9IxaAdNNgFoCEdAoi5YUeuFH3V9lChoBkdAcmRux8lXzWgHTUMBaAhHQKIvXbYbsGB1fZQoaAZHQHBwgKjSG8FoB007AWgIR0CiMPanR9gGdX2UKGgGR0ByJEYj0L+haAdNhgFoCEdAojI9HhCMP3V9lChoBkdAb545jH4oJGgHTUgBaAhHQKIznci4axZ1fZQoaAZHQHF1/uogmqpoB00gAWgIR0CiNNtEXtSidX2UKGgGR0Bx4swBYFJQaAdNJwFoCEdAojb5KWcBl3V9lChoBkdAcIQZntfG/GgHTSUBaAhHQKI4L80DU3J1fZQoaAZHQG6O85S3soloB00ZAWgIR0CiOZn/cWTHdX2UKGgGR0BxPR/2Cdz5aAdNUAFoCEdAojwjV2A5JnV9lChoBkdAb5upxWDHwWgHTbABaAhHQKI+AstkFwF1fZQoaAZHQG5br2g3975oB006AWgIR0CiPwgYYR/WdX2UKGgGR0A6YYIjW07baAdL8GgIR0CiQHdLxqfwdX2UKGgGR0BxIRjG1hLHaAdNMgFoCEdAokFvOryUcHV9lChoBkdAcNdRjjJdSmgHTR4BaAhHQKJCTW+XZ5B1fZQoaAZHQHGzLRBu4w1oB01pAWgIR0CiRAuMuOCHdX2UKGgGR0BxkoTYdyT7aAdNIgFoCEdAokT73TNMXnV9lChoBkdAX0mv6j323GgHTegDaAhHQKJIyEidJ8R1fZQoaAZHQEB7VZLZi/hoB0vbaAhHQKJJgJvYODt1fZQoaAZHQHGHKlP8AJdoB00xAWgIR0CiSn3D3ueCdX2UKGgGR0BusgXKr7wbaAdNJgFoCEdAokwM+C9RJnV9lChoBkdAbtThw2l2vGgHTUEBaAhHQKJNGJGe+VV1fZQoaAZHQHElYEOiFkBoB00WAWgIR0CiTfc8s+V1dX2UKGgGR0BURFQyhzvJaAdL3mgIR0CiTqdqcmShdX2UKGgGR0Awp0fYBeXzaAdL0GgIR0CiT+y6lLvkdX2UKGgGR0BxXYd5prULaAdNaAFoCEdAolEbpxFRYXV9lChoBkdAb0tnXd0q6WgHTSoBaAhHQKJSJjWkJrt1fZQoaAZHQHFeKySmqHZoB005AWgIR0CiVD9uHerNdX2UKGgGR0ByTLpMYdhiaAdNVQFoCEdAolW5Gx2SuHV9lChoBkdAcPA3WFvhqGgHTR8BaAhHQKJW3UQ04zd1fZQoaAZHQFFpuWa+evpoB0veaAhHQKJXzdRiw0R1fZQoaAZHQGGHIz3yqdZoB03oA2gIR0CiXWQg9vCNdX2UKGgGR0BRydTgl4TsaAdNDAFoCEdAol7qWVu76HV9lChoBkdAbp+7dSEUTWgHTU8BaAhHQKJgAAmzByl1fZQoaAZHQHHM8+FDfFdoB00jAWgIR0CiYOYB/7SBdX2UKGgGR0BEgKxkd3jdaAdL7mgIR0CiYat5+pfhdX2UKGgGR0BuhJLGrCFcaAdNSAFoCEdAomNKF/QSjHV9lChoBkdAb0YCbMHKOmgHTSgBaAhHQKJkOq6vq1R1fZQoaAZHQFMUkkrwvxpoB0v0aAhHQKJlAyprDZV1fZQoaAZHQHNRz6WPcSJoB01UAWgIR0CiZrKzAvcrdX2UKGgGR0Bvx9FBppN9aAdNYwFoCEdAomfSl3yI6HV9lChoBkdAcWxyIHkcTGgHTQ8BaAhHQKJopdVvMr51fZQoaAZHQDdqohpxm05oB0u7aAhHQKJpOoF3Y+V1fZQoaAZHQE3gG47Rv3toB0vhaAhHQKJqi2ZRbbF1fZQoaAZHQHB6wgDA8CBoB01IAWgIR0Cia5Z1Ng0CdX2UKGgGR0ByqrD50r9VaAdNYwFoCEdAomzBgE2YOXV9lChoBkdAPp7M1TBInWgHS8loCEdAom3/225QQHV9lChoBkdAciF14xDb8GgHTQIBaAhHQKJuyzch1T11fZQoaAZHQG3JZuyeI2xoB00aAWgIR0Cib6tg0CRwdX2UKGgGR0BxQtC8e0XxaAdNDwFoCEdAonCIIOYplXV9lChoBkdAb2Dw6QvHtGgHTQIBaAhHQKJyQaaTfSB1fZQoaAZHQEO4RbKRuCRoB0vpaAhHQKJzMvnKW9l1fZQoaAZHQG8Y4qwyIpJoB00wAWgIR0CidG9yT6i1dX2UKGgGR0BwxK5avA45aAdNXAFoCEdAonXqvPkaM3V9lChoBkdAcV/YpUgjhWgHTX0BaAhHQKJ4oBNmDlJ1fZQoaAZHQDWOqT8pCrtoB0vGaAhHQKJ5kzwc5sF1fZQoaAZHQHERbiEQGwBoB016AWgIR0Cie1PVd5Y6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRt0eTFiwJImMaS5dBnF0F3gCMA2luY5SKEWn3JNMNeObN3rRXZHG5kMEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRz1W7zECVt0rQNhBwTNmjnACMA2luY5SKELVY5SllL3lCtQ3cu4E+hF51jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKxlZ5GXVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
first_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00174c9cc96c6a3a8a626d7c1734a369cee046ce3a4f53b6c83df78f8ce49c30
3
+ size 146566
first_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
first_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6db3282170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6db3282200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6db3282290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6db3282320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e6db32823b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e6db3282440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6db32824d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6db3282560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e6db32825f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6db3282680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6db3282710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6db32827a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e6db327b100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689769680969223736,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALpdK74CQwU/9iM6Pjyopr5s/IE99vw4OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI20j5bhWKMAWyUTS4BjAF0lEdAoe9iKP4mC3V9lChoBkdAcQUdbxEv02gHTUcBaAhHQKHxBHe7+UB1fZQoaAZHQHFLV2q1gIBoB01gAWgIR0Ch8iBKcurZdX2UKGgGR0BvQftWuHN5aAdNUAFoCEdAofMuLP2PDHV9lChoBkdAbbwYGdI5HWgHTR0BaAhHQKH0O8AaNuN1fZQoaAZHQHArc+V1Oj9oB00VAWgIR0Ch9jplSS/1dX2UKGgGR0BTjA0Kqn3taAdL3WgIR0Ch9ym8dxQ0dX2UKGgGR0BwOYNMGorGaAdNKQFoCEdAofhe5paibnV9lChoBkdAbvHodMj/uWgHTRcBaAhHQKH6gwwCbMJ1fZQoaAZHQHHf3k1dgOVoB01jAWgIR0Ch/CgUlAu7dX2UKGgGR0Bwfrnp0OmSaAdNXQFoCEdAof3M1XNkfHV9lChoBkdAVZajzqbBoGgHTegDaAhHQKIB8DbrTph1fZQoaAZHQHAZSb2Dg65oB00pAWgIR0CiA4eumrKedX2UKGgGR0BwOvgCOmzjaAdNTQFoCEdAogSQBtDUmXV9lChoBkdAcCzXokiUxGgHTTwBaAhHQKIFlhvR7Z51fZQoaAZHQG7V2rXDm8xoB01mAWgIR0CiBrGDDjzadX2UKGgGR0BucXHq/ub7aAdNKwFoCEdAoghDW3BpH3V9lChoBkdAcQZm5UcXFmgHTQgBaAhHQKIJGUvf0mN1fZQoaAZHQG9bivovBadoB00uAWgIR0CiChOQZGaydX2UKGgGR0BwrD8jzI3jaAdNHAFoCEdAoguWNJe3QXV9lChoBkdAcUJYHxBmgGgHTSkBaAhHQKIMf3u/k/91fZQoaAZHQG+HhKL876poB00cAWgIR0CiDWv8Q7LddX2UKGgGR0Bx/W0BwMpgaAdNPAFoCEdAog5jXxvvSnV9lChoBkdAbgaF5fMOgGgHTb4BaAhHQKIQaZflZHN1fZQoaAZHQFWG0yP+4spoB03oA2gIR0CiFKJUPxx2dX2UKGgGR0Bx8uXzDn/2aAdNlQFoCEdAohZOsDGLk3V9lChoBkdAcquzt1IRRWgHTSwBaAhHQKIYfxOLzf91fZQoaAZHQHB6yqQzUI9oB02+AWgIR0CiGntq59VndX2UKGgGR0BwKcdq+JxeaAdNLAFoCEdAohwDWVeKK3V9lChoBkdAcdWd3Sro4mgHTXkBaAhHQKIee46Oo5x1fZQoaAZHQG+KiwSrYGtoB01IAWgIR0CiH4KMFUyYdX2UKGgGR0BwewnTiKixaAdNbQFoCEdAoiCnm3fAK3V9lChoBkdAb8HJFLFn7GgHTUABaAhHQKIiRbvgFX91fZQoaAZHQG9JSrPt2LZoB01dAWgIR0CiI1Pmgam5dX2UKGgGR0Bufk3qAz55aAdNFgFoCEdAoiQzkGRmsnV9lChoBkdASijZUT+NtWgHTQcBaAhHQKIlmvicXnB1fZQoaAZHQHBlafBeok1oB00UAWgIR0CiJnmK64DtdX2UKGgGR0BwcZ1r6+FlaAdNIQFoCEdAoidc5sCT2XV9lChoBkdAcZsZr56+nWgHTUYBaAhHQKIoY4p+c6N1fZQoaAZHQHDUFM/QjUxoB01IAWgIR0CiKghTwUg0dX2UKGgGR0Buyx6po9LYaAdNHgFoCEdAoirrp7kXDXV9lChoBkdAb9uOinHeamgHTRkBaAhHQKIrz2jfvWp1fZQoaAZHQHFMbqlgtvpoB00uAWgIR0CiLVz/p+tsdX2UKGgGR0BwrT3ai9IxaAdNNgFoCEdAoi5YUeuFH3V9lChoBkdAcmRux8lXzWgHTUMBaAhHQKIvXbYbsGB1fZQoaAZHQHBwgKjSG8FoB007AWgIR0CiMPanR9gGdX2UKGgGR0ByJEYj0L+haAdNhgFoCEdAojI9HhCMP3V9lChoBkdAb545jH4oJGgHTUgBaAhHQKIznci4axZ1fZQoaAZHQHF1/uogmqpoB00gAWgIR0CiNNtEXtSidX2UKGgGR0Bx4swBYFJQaAdNJwFoCEdAojb5KWcBl3V9lChoBkdAcIQZntfG/GgHTSUBaAhHQKI4L80DU3J1fZQoaAZHQG6O85S3soloB00ZAWgIR0CiOZn/cWTHdX2UKGgGR0BxPR/2Cdz5aAdNUAFoCEdAojwjV2A5JnV9lChoBkdAb5upxWDHwWgHTbABaAhHQKI+AstkFwF1fZQoaAZHQG5br2g3975oB006AWgIR0CiPwgYYR/WdX2UKGgGR0A6YYIjW07baAdL8GgIR0CiQHdLxqfwdX2UKGgGR0BxIRjG1hLHaAdNMgFoCEdAokFvOryUcHV9lChoBkdAcNdRjjJdSmgHTR4BaAhHQKJCTW+XZ5B1fZQoaAZHQHGzLRBu4w1oB01pAWgIR0CiRAuMuOCHdX2UKGgGR0BxkoTYdyT7aAdNIgFoCEdAokT73TNMXnV9lChoBkdAX0mv6j323GgHTegDaAhHQKJIyEidJ8R1fZQoaAZHQEB7VZLZi/hoB0vbaAhHQKJJgJvYODt1fZQoaAZHQHGHKlP8AJdoB00xAWgIR0CiSn3D3ueCdX2UKGgGR0BusgXKr7wbaAdNJgFoCEdAokwM+C9RJnV9lChoBkdAbtThw2l2vGgHTUEBaAhHQKJNGJGe+VV1fZQoaAZHQHElYEOiFkBoB00WAWgIR0CiTfc8s+V1dX2UKGgGR0BURFQyhzvJaAdL3mgIR0CiTqdqcmShdX2UKGgGR0Awp0fYBeXzaAdL0GgIR0CiT+y6lLvkdX2UKGgGR0BxXYd5prULaAdNaAFoCEdAolEbpxFRYXV9lChoBkdAb0tnXd0q6WgHTSoBaAhHQKJSJjWkJrt1fZQoaAZHQHFeKySmqHZoB005AWgIR0CiVD9uHerNdX2UKGgGR0ByTLpMYdhiaAdNVQFoCEdAolW5Gx2SuHV9lChoBkdAcPA3WFvhqGgHTR8BaAhHQKJW3UQ04zd1fZQoaAZHQFFpuWa+evpoB0veaAhHQKJXzdRiw0R1fZQoaAZHQGGHIz3yqdZoB03oA2gIR0CiXWQg9vCNdX2UKGgGR0BRydTgl4TsaAdNDAFoCEdAol7qWVu76HV9lChoBkdAbp+7dSEUTWgHTU8BaAhHQKJgAAmzByl1fZQoaAZHQHHM8+FDfFdoB00jAWgIR0CiYOYB/7SBdX2UKGgGR0BEgKxkd3jdaAdL7mgIR0CiYat5+pfhdX2UKGgGR0BuhJLGrCFcaAdNSAFoCEdAomNKF/QSjHV9lChoBkdAb0YCbMHKOmgHTSgBaAhHQKJkOq6vq1R1fZQoaAZHQFMUkkrwvxpoB0v0aAhHQKJlAyprDZV1fZQoaAZHQHNRz6WPcSJoB01UAWgIR0CiZrKzAvcrdX2UKGgGR0Bvx9FBppN9aAdNYwFoCEdAomfSl3yI6HV9lChoBkdAcWxyIHkcTGgHTQ8BaAhHQKJopdVvMr51fZQoaAZHQDdqohpxm05oB0u7aAhHQKJpOoF3Y+V1fZQoaAZHQE3gG47Rv3toB0vhaAhHQKJqi2ZRbbF1fZQoaAZHQHB6wgDA8CBoB01IAWgIR0Cia5Z1Ng0CdX2UKGgGR0ByqrD50r9VaAdNYwFoCEdAomzBgE2YOXV9lChoBkdAPp7M1TBInWgHS8loCEdAom3/225QQHV9lChoBkdAciF14xDb8GgHTQIBaAhHQKJuyzch1T11fZQoaAZHQG3JZuyeI2xoB00aAWgIR0Cib6tg0CRwdX2UKGgGR0BxQtC8e0XxaAdNDwFoCEdAonCIIOYplXV9lChoBkdAb2Dw6QvHtGgHTQIBaAhHQKJyQaaTfSB1fZQoaAZHQEO4RbKRuCRoB0vpaAhHQKJzMvnKW9l1fZQoaAZHQG8Y4qwyIpJoB00wAWgIR0CidG9yT6i1dX2UKGgGR0BwxK5avA45aAdNXAFoCEdAonXqvPkaM3V9lChoBkdAcV/YpUgjhWgHTX0BaAhHQKJ4oBNmDlJ1fZQoaAZHQDWOqT8pCrtoB0vGaAhHQKJ5kzwc5sF1fZQoaAZHQHERbiEQGwBoB016AWgIR0Cie1PVd5Y6dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVGgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRt0eTFiwJImMaS5dBnF0F3gCMA2luY5SKEWn3JNMNeObN3rRXZHG5kMEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": "Generator(PCG64)"
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRz1W7zECVt0rQNhBwTNmjnACMA2luY5SKELVY5SllL3lCtQ3cu4E+hF51jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKxlZ5GXVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
first_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aa45ecbd8a0aa22a4051d836807e247176622fe60ea3231e0acf898ac19d136
3
+ size 87929
first_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebf8d56a64141876aa3b7936271136dd97c49ef397ff44b03c08b3815ac6c5f9
3
+ size 43329
first_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (154 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.46865749999998, "std_reward": 68.18376742202653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-19T13:48:16.082052"}