Sserujja's picture
Add files using upload-large-folder tool
7fcb446 verified
import torch.nn as nn
from models.base_model import BaseModel
from typing import Any
import torch
class RNNModel(BaseModel):
def __init__(self, config: Any, tokenizer: Any):
super().__init__(config, tokenizer)
self.embedding = nn.Embedding(
num_embeddings=tokenizer.vocab_size,
embedding_dim=config.embedding_dim
)
self.rnn = nn.RNN(
input_size=config.embedding_dim,
hidden_size=config.rnn_units,
batch_first=True,
nonlinearity='tanh'
)
self.dropout = nn.Dropout(config.dropout_rate)
self.fc1 = nn.Linear(config.rnn_units, config.dense_units)
self.fc2 = nn.Linear(config.dense_units, 1)
self.relu = nn.ReLU()
def forward(self, x) -> torch.Tensor:
if isinstance(x, dict): # BERT case handled in base model
raise ValueError("RNNModel doesn't support BERT inputs")
# x shape: (batch_size, seq_length)
embedded = self.embedding(x) # (batch_size, seq_length, embedding_dim)
# RNN
_, hidden = self.rnn(embedded) # hidden: (1, batch_size, rnn_units)
hidden = hidden.squeeze(0) # (batch_size, rnn_units)
# Fully connected
x = self.dropout(hidden)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x