|
from transformers import BertModel
|
|
import torch.nn as nn
|
|
from models.base_model import BaseModel
|
|
from typing import Any
|
|
import torch
|
|
|
|
class BERTModel(BaseModel):
|
|
def __init__(self, config: Any, tokenizer: Any):
|
|
super().__init__(config, tokenizer)
|
|
|
|
self.bert = BertModel.from_pretrained(config.model_name)
|
|
|
|
|
|
for param in self.bert.parameters():
|
|
param.requires_grad = False
|
|
|
|
if config.trainable_layers > 0:
|
|
for layer in self.bert.encoder.layer[-config.trainable_layers:]:
|
|
for param in layer.parameters():
|
|
param.requires_grad = True
|
|
|
|
self.dropout = nn.Dropout(0.1)
|
|
self.classifier = nn.Linear(self.bert.config.hidden_size, 1)
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
if not isinstance(x, dict):
|
|
raise ValueError("BERTModel requires dictionary inputs")
|
|
|
|
for k,v in x.items():
|
|
if v.dim( )==1:
|
|
raise ValueError(f"{k} must be 2D (batch_size, seq_len), got shape: {v.shape}")
|
|
|
|
input_ids = x['input_ids']
|
|
attention_mask = x['attention_mask']
|
|
token_type_ids = x['token_type_ids']
|
|
|
|
|
|
assert input_ids.ndim == 2, f"Expected input_ids to be 2D, got {input_ids.shape}"
|
|
assert attention_mask.ndim == 2, f"Expected attention_mask to be 2D, got {attention_mask.shape}"
|
|
assert token_type_ids.ndim == 2, f"Expected token_type_ids to be 2D, got {token_type_ids.shape}"
|
|
|
|
|
|
outputs = self.bert(
|
|
input_ids= input_ids,
|
|
attention_mask= attention_mask,
|
|
token_type_ids= token_type_ids,
|
|
return_dict=True
|
|
)
|
|
|
|
pooled_output = outputs.last_hidden_state[:, 0, :]
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
|
|
return logits |