imdb-sentiment-model / models /base_model.py
Sserujja's picture
Add files using upload-large-folder tool
7fcb446 verified
import pytorch_lightning as pl
import torch
import torch.nn as nn
from torch.optim import Adam
from torchmetrics import Accuracy
from datetime import datetime
import os
import pickle
from utils.tokenizer import BaseTokenizer, BertTokenizer # Assuming BaseTokenizer is defined in utils.tokenizer
class BaseModel(pl.LightningModule):
def __init__(self, config, tokenizer):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.loss_fn = nn.BCEWithLogitsLoss()
self.train_acc = Accuracy(task='binary')
self.val_acc = Accuracy(task='binary')
self.test_acc = Accuracy(task='binary')
def forward(self, x):
raise NotImplementedError
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss_fn(logits.squeeze(), y.float())
self.train_acc(logits.squeeze().sigmoid(), y)
self.log('train_loss', loss, prog_bar=True)
self.log('train_acc', self.train_acc, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss_fn(logits.squeeze(), y.float())
self.val_acc(logits.squeeze().sigmoid(), y)
self.log('val_loss', loss, prog_bar=True)
self.log('val_acc', self.val_acc, prog_bar=True)
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss_fn(logits.squeeze(), y.float())
self.test_acc(logits.squeeze().sigmoid(), y)
self.log('test_loss', loss)
self.log('test_acc', self.test_acc)
def configure_optimizers(self):
optimizer = Adam(self.parameters(), lr=self.config.learning_rate)
return optimizer
def predict(self, text):
self.eval()
with torch.no_grad():
encoded = self.tokenizer.encode([text])
if isinstance(encoded, dict): # For BERT
encoded = {k: torch.tensor(v).to(self.device) for k, v in encoded.items()}
logits = self(encoded)
else:
logits = self(torch.tensor(encoded).to(self.device))
return torch.sigmoid(logits.squeeze()).item()
def save(self, model_dir=None):
if model_dir is None:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
model_dir = os.path.join(self.config.output_dir, "models", f"{self.__class__.__name__}_{timestamp}")
os.makedirs(model_dir, exist_ok=True)
torch.save(self.state_dict(), os.path.join(model_dir, "model.pt"))
# Save config and tokenizer for later evaluation
with open(os.path.join(model_dir, "config.pkl"), 'wb') as f:
pickle.dump(self.config, f)
if not isinstance(self.tokenizer, BertTokenizer): # Assuming BertTokenizer is imported
self.tokenizer.save(os.path.join(model_dir, "tokenizer.pkl"))
return model_dir
@classmethod
def load_from_checkpoint(cls, checkpoint_path: str, tokenizer=None):
"""Load model from saved checkpoint"""
model_dir = os.path.dirname(checkpoint_path)
# Load config
with open(os.path.join(model_dir, "config.pkl"), 'rb') as f:
config = pickle.load(f)
# Load tokenizer if not provided
if tokenizer is None:
tokenizer_path = os.path.join(model_dir, "tokenizer.pkl")
if os.path.exists(tokenizer_path):
tokenizer = BaseTokenizer.load(tokenizer_path) # Assuming BaseTokenizer is imported
# Initialize model
model = cls(config, tokenizer)
model.load_state_dict(torch.load(checkpoint_path))
return model