Sri-Vigneshwar-DJ commited on
Commit
62b7847
·
verified ·
1 Parent(s): de5b886
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: video-text-to-text
6
+ tags:
7
+ - video
8
+ - video-understanding
9
+ - vision
10
+ - multimodal
11
+ - conversational
12
+ - custom_code
13
+ - instruction-tuning
14
+ library_name: transformers
15
+ ---
16
+
17
+ # Apollo: An Exploration of Video Understanding in Large Multimodal Models
18
+
19
+ Apollo is a family of Large Multimodal Models (LMMs) that push the state-of-the-art in video understanding. It supports tasks including:
20
+ - Long-form video comprehension
21
+ - Temporal reasoning
22
+ - Complex video question-answering
23
+ - Multi-turn conversations grounded in video content
24
+
25
+ Apollo models excel at handling hour-long videos, balancing speed and accuracy through strategic design decisions. Our models outperform most 7B competitors at just 3B parameters and even rival 30B-scale models.
26
+
27
+
28
+
29
+ **Key Highlights:**
30
+ - **7B model varient**
31
+ - **32 tokens/frame**
32
+
33
+ ## Quick Start
34
+
35
+ **Installation:**
36
+ ```bash
37
+ pip install -e .
38
+ pip install flash-attn --no-build-isolation
39
+ ```
40
+
41
+ **Inference Example:**
42
+ ```python
43
+ import torch
44
+ from transformers import AutoModelForCausalLM
45
+ from apollo.mm_utils import (
46
+ KeywordsStoppingCriteria,
47
+ tokenizer_mm_token,
48
+ ApolloMMLoader
49
+ )
50
+ from apollo.conversations import conv_templates, SeparatorStyle
51
+ from huggingface_hub import snapshot_download
52
+
53
+ model_url = "Apollo-LMMs/Apollo-3B-t32"
54
+ model_path = snapshot_download(model_url, repo_type="model")
55
+
56
+ device = "cuda" if torch.cuda.is_available() else "cpu"
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_path,
59
+ trust_remote_code=True,
60
+ low_cpu_mem_usage=True
61
+ ).to(device=device, dtype=torch.bfloat16)
62
+
63
+ tokenizer = model.tokenizer
64
+ vision_processors = model.vision_tower.vision_processor
65
+ config = model.config
66
+ num_repeat_token = config.mm_connector_cfg['num_output_tokens']
67
+ mm_processor = ApolloMMLoader(
68
+ vision_processors,
69
+ config.clip_duration,
70
+ frames_per_clip=4,
71
+ clip_sampling_ratio=0.65,
72
+ model_max_length=config.model_max_length,
73
+ device=device,
74
+ num_repeat_token=num_repeat_token
75
+ )
76
+
77
+ video_path = "path/to/video.mp4"
78
+ question = "Describe this video in detail"
79
+ mm_data, replace_string = mm_processor.load_video(video_path)
80
+
81
+ conv = conv_templates["qwen_2"].copy()
82
+ conv.append_message(conv.roles[0], replace_string + "\n\n" + question)
83
+ conv.append_message(conv.roles[1], None)
84
+
85
+ prompt = conv.get_prompt()
86
+ input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device)
87
+
88
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
89
+ stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids)
90
+
91
+ with torch.inference_mode():
92
+ output_ids = model.generate(
93
+ input_ids,
94
+ vision_input=[mm_data],
95
+ data_types=['video'],
96
+ do_sample=True,
97
+ temperature=0.4,
98
+ max_new_tokens=256,
99
+ top_p=0.7,
100
+ use_cache=True,
101
+ num_beams=1,
102
+ stopping_criteria=[stopping_criteria]
103
+ )
104
+
105
+ pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
106
+ print(pred)
107
+ ```
108
+
109
+
110
+ For more details, visit the [project website](https://apollo-lmms.github.io) or check out the [paper](https://arxiv.org/abs/2412.10360).