Sri-Vigneshwar-DJ
commited on
Readme
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: video-text-to-text
|
6 |
+
tags:
|
7 |
+
- video
|
8 |
+
- video-understanding
|
9 |
+
- vision
|
10 |
+
- multimodal
|
11 |
+
- conversational
|
12 |
+
- custom_code
|
13 |
+
- instruction-tuning
|
14 |
+
library_name: transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
# Apollo: An Exploration of Video Understanding in Large Multimodal Models
|
18 |
+
|
19 |
+
Apollo is a family of Large Multimodal Models (LMMs) that push the state-of-the-art in video understanding. It supports tasks including:
|
20 |
+
- Long-form video comprehension
|
21 |
+
- Temporal reasoning
|
22 |
+
- Complex video question-answering
|
23 |
+
- Multi-turn conversations grounded in video content
|
24 |
+
|
25 |
+
Apollo models excel at handling hour-long videos, balancing speed and accuracy through strategic design decisions. Our models outperform most 7B competitors at just 3B parameters and even rival 30B-scale models.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
**Key Highlights:**
|
30 |
+
- **7B model varient**
|
31 |
+
- **32 tokens/frame**
|
32 |
+
|
33 |
+
## Quick Start
|
34 |
+
|
35 |
+
**Installation:**
|
36 |
+
```bash
|
37 |
+
pip install -e .
|
38 |
+
pip install flash-attn --no-build-isolation
|
39 |
+
```
|
40 |
+
|
41 |
+
**Inference Example:**
|
42 |
+
```python
|
43 |
+
import torch
|
44 |
+
from transformers import AutoModelForCausalLM
|
45 |
+
from apollo.mm_utils import (
|
46 |
+
KeywordsStoppingCriteria,
|
47 |
+
tokenizer_mm_token,
|
48 |
+
ApolloMMLoader
|
49 |
+
)
|
50 |
+
from apollo.conversations import conv_templates, SeparatorStyle
|
51 |
+
from huggingface_hub import snapshot_download
|
52 |
+
|
53 |
+
model_url = "Apollo-LMMs/Apollo-3B-t32"
|
54 |
+
model_path = snapshot_download(model_url, repo_type="model")
|
55 |
+
|
56 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_path,
|
59 |
+
trust_remote_code=True,
|
60 |
+
low_cpu_mem_usage=True
|
61 |
+
).to(device=device, dtype=torch.bfloat16)
|
62 |
+
|
63 |
+
tokenizer = model.tokenizer
|
64 |
+
vision_processors = model.vision_tower.vision_processor
|
65 |
+
config = model.config
|
66 |
+
num_repeat_token = config.mm_connector_cfg['num_output_tokens']
|
67 |
+
mm_processor = ApolloMMLoader(
|
68 |
+
vision_processors,
|
69 |
+
config.clip_duration,
|
70 |
+
frames_per_clip=4,
|
71 |
+
clip_sampling_ratio=0.65,
|
72 |
+
model_max_length=config.model_max_length,
|
73 |
+
device=device,
|
74 |
+
num_repeat_token=num_repeat_token
|
75 |
+
)
|
76 |
+
|
77 |
+
video_path = "path/to/video.mp4"
|
78 |
+
question = "Describe this video in detail"
|
79 |
+
mm_data, replace_string = mm_processor.load_video(video_path)
|
80 |
+
|
81 |
+
conv = conv_templates["qwen_2"].copy()
|
82 |
+
conv.append_message(conv.roles[0], replace_string + "\n\n" + question)
|
83 |
+
conv.append_message(conv.roles[1], None)
|
84 |
+
|
85 |
+
prompt = conv.get_prompt()
|
86 |
+
input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device)
|
87 |
+
|
88 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
89 |
+
stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids)
|
90 |
+
|
91 |
+
with torch.inference_mode():
|
92 |
+
output_ids = model.generate(
|
93 |
+
input_ids,
|
94 |
+
vision_input=[mm_data],
|
95 |
+
data_types=['video'],
|
96 |
+
do_sample=True,
|
97 |
+
temperature=0.4,
|
98 |
+
max_new_tokens=256,
|
99 |
+
top_p=0.7,
|
100 |
+
use_cache=True,
|
101 |
+
num_beams=1,
|
102 |
+
stopping_criteria=[stopping_criteria]
|
103 |
+
)
|
104 |
+
|
105 |
+
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
106 |
+
print(pred)
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
For more details, visit the [project website](https://apollo-lmms.github.io) or check out the [paper](https://arxiv.org/abs/2412.10360).
|