titae commited on
Commit
e412c1b
·
verified ·
1 Parent(s): 7b3a3dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -169
README.md CHANGED
@@ -1,199 +1,83 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
91
 
 
92
 
93
- #### Training Hyperparameters
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-4.0
4
+ language:
5
+ - smi
6
+ - smj
7
+ - sme
8
+ - sma
9
+ - smn
10
+ - nor
11
+ base_model:
12
+ - microsoft/trocr-base-printed
13
  ---
14
 
15
+ # Model Card for Sprakbanken/trocr_smi_nor
16
+ This is a TrOCR-model for OCR (optical character recognition) of Sámi languages.
17
+ It can be used to recognize text in images of printed text (scanned books, magazines, etc.) in North Sámi, South Sámi, Lule Sámi, and Inari Sámi.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ## How to Get Started with the Model
20
 
21
  Use the code below to get started with the model.
22
 
23
+ ```python
24
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
25
+ from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ processor = TrOCRProcessor.from_pretrained("Sprakbanken/trocr_smi_nor")
28
+ model = VisionEncoderDecoderModel.from_pretrained("Sprakbanken/trocr_smi_nor")
29
 
30
+ image = Image.open("path_to_image.jpg").convert("RGB")
31
 
32
+ pixel_values = processor(image, return_tensors="pt").pixel_values
33
+ generated_ids = model.generate(pixel_values)
34
 
35
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
36
+ ```
37
 
38
+ ## Model Details
39
+ This model is [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) fine-tuned on manually annotated Sámi and Norwegian OCR data.
40
+ See our paper for more details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
42
 
43
+ ### Model Description
44
 
45
+ - **Developed by:** The National Library of Norway
46
+ - **Model type:** TrOCR
47
+ - **Languages:** North Sámi (sme), South Sámi (sma), Lule Sámi (smj), and Inari Sámi (smn)
48
+ - **License:** [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
49
+ - **Finetuned from model :** [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed)
50
 
51
+ ### Model Sources
52
 
53
+ - **Repository:** https://github.com/Sprakbanken/nodalida25_sami_ocr
54
+ - **Paper:** "Enstad T, Trosterud T, Røsok MI, Beyer Y, Roald M. Comparative analysis of optical character recognition methods for Sámi texts from the National Library of Norway. Accepted for publication in Proceedings of the 25th Nordic Conference on Computational Linguistics (NoDaLiDa) 2025." (preprint coming soon.)
55
 
 
56
 
57
+ ## Collection details
58
+ This model is a part of our collection of OCR models for Sámi languages.
59
 
60
+ The following TrOCR models are available:
61
+ - [Sprakbanken/trocr_smi](https://huggingface.co/Sprakbanken/trocr_smi): [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) fine-tuned on manually annotated Sámi data
62
+ - [Sprakbanken/trocr_smi_nor](https://huggingface.co/Sprakbanken/trocr_smi_nor): microsoft/trocr-base-printed fine-tuned on manually annotated Sámi and Norwegian data
63
+ - [Sprakbanken/trocr_smi_pred](https://huggingface.co/Sprakbanken/trocr_smi_pred): microsoft/trocr-base-printed fine-tuned on manually annotated and automatically transcribed Sámi data
64
+ - [Sprakbanken/trocr_smi_nor_pred](https://huggingface.co/Sprakbanken/trocr_smi_nor_pred): microsoft/trocr-base-printed fine-tuned on manually annotated and automatically transcribed Sámi data, and manually annotated Norwegian data
65
+ - [Sprakbanken/trocr_smi_synth](https://huggingface.co/Sprakbanken/trocr_smi_synth): microsoft/trocr-base-printed fine-tuned on [Sprakbanken/synthetic_sami_ocr_data](https://huggingface.co/datasets/Sprakbanken/synthetic_sami_ocr_data), and then on manually annotated Sámi data
66
+ - [Sprakbanken/trocr_smi_pred_synth](https://huggingface.co/Sprakbanken/trocr_smi_pred_synth): microsoft/trocr-base-printed fine-tuned on Sprakbanken/synthetic_sami_ocr_data, and then fine-tuned on manually annotated and automatically transcribed Sámi data
67
+ - [Sprakbanken/trocr_smi_nor_pred_synth](https://huggingface.co/Sprakbanken/trocr_smi_nor_pred_synth): microsoft/trocr-base-printed fine-tuned on Sprakbanken/synthetic_sami_ocr_data, and then fine-tuned on manually annotated and automatically transcribed Sámi data, and manually annotated Norwegian
68
 
69
+ [Sprakbanken/trocr_smi_pred_synth](https://huggingface.co/Sprakbanken/trocr_smi_pred_synth) is the model that achieved the best results (of the TrOCR models) on our test dataset.
70
 
 
71
 
72
+ ## Uses
73
+ You can use the raw model for optical character recognition (OCR) on single text-line images in North Sámi, South Sámi, Lule Sámi, and Inari Sámi.
74
 
75
+ ### Out-of-Scope Use
76
+ The model only works with images of lines of text.
77
+ If you have images of entire pages of text, you must segment the text into lines first to benefit from this model.
78
 
79
+ ## Citation
80
 
81
  **APA:**
82
 
83
+ Enstad, T., Trosterud, T., Røsok, M. I., Beyer, Y., & Roald, M. (2025). Comparative analysis of optical character recognition methods for Sámi texts from the National Library of Norway. Proceedings of the 25th Nordic Conference on Computational Linguistics (NoDaLiDa).