Jaime García Villena
commited on
Commit
·
7cd0692
1
Parent(s):
9684c94
add a way to test this tflite
Browse files- coco_labels.json +82 -0
- test_images/cat.jpg +0 -0
- test_yolob8_tflite.py +205 -0
coco_labels.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"0": "person",
|
3 |
+
"1": "bicycle",
|
4 |
+
"2": "car",
|
5 |
+
"3": "motorcycle",
|
6 |
+
"4": "airplane",
|
7 |
+
"5": "bus",
|
8 |
+
"6": "train",
|
9 |
+
"7": "truck",
|
10 |
+
"8": "boat",
|
11 |
+
"9": "traffic light",
|
12 |
+
"10": "fire hydrant",
|
13 |
+
"11": "stop sign",
|
14 |
+
"12": "parking meter",
|
15 |
+
"13": "bench",
|
16 |
+
"14": "bird",
|
17 |
+
"15": "cat",
|
18 |
+
"16": "dog",
|
19 |
+
"17": "horse",
|
20 |
+
"18": "sheep",
|
21 |
+
"19": "cow",
|
22 |
+
"20": "elephant",
|
23 |
+
"21": "bear",
|
24 |
+
"22": "zebra",
|
25 |
+
"23": "giraffe",
|
26 |
+
"24": "backpack",
|
27 |
+
"25": "umbrella",
|
28 |
+
"26": "handbag",
|
29 |
+
"27": "tie",
|
30 |
+
"28": "suitcase",
|
31 |
+
"29": "frisbee",
|
32 |
+
"30": "skis",
|
33 |
+
"31": "snowboard",
|
34 |
+
"32": "sports ball",
|
35 |
+
"33": "kite",
|
36 |
+
"34": "baseball bat",
|
37 |
+
"35": "baseball glove",
|
38 |
+
"36": "skateboard",
|
39 |
+
"37": "surfboard",
|
40 |
+
"38": "tennis racket",
|
41 |
+
"39": "bottle",
|
42 |
+
"40": "wine glass",
|
43 |
+
"41": "cup",
|
44 |
+
"42": "fork",
|
45 |
+
"43": "knife",
|
46 |
+
"44": "spoon",
|
47 |
+
"45": "bowl",
|
48 |
+
"46": "banana",
|
49 |
+
"47": "apple",
|
50 |
+
"48": "sandwich",
|
51 |
+
"49": "orange",
|
52 |
+
"50": "broccoli",
|
53 |
+
"51": "carrot",
|
54 |
+
"52": "hot dog",
|
55 |
+
"53": "pizza",
|
56 |
+
"54": "donut",
|
57 |
+
"55": "cake",
|
58 |
+
"56": "chair",
|
59 |
+
"57": "couch",
|
60 |
+
"58": "potted plant",
|
61 |
+
"59": "bed",
|
62 |
+
"60": "dining table",
|
63 |
+
"61": "toilet",
|
64 |
+
"62": "tv",
|
65 |
+
"63": "laptop",
|
66 |
+
"64": "mouse",
|
67 |
+
"65": "remote",
|
68 |
+
"66": "keyboard",
|
69 |
+
"67": "cell phone",
|
70 |
+
"68": "microwave",
|
71 |
+
"69": "oven",
|
72 |
+
"70": "toaster",
|
73 |
+
"71": "sink",
|
74 |
+
"72": "refrigerator",
|
75 |
+
"73": "book",
|
76 |
+
"74": "clock",
|
77 |
+
"75": "vase",
|
78 |
+
"76": "scissors",
|
79 |
+
"77": "teddy bear",
|
80 |
+
"78": "hair drier",
|
81 |
+
"79": "toothbrush"
|
82 |
+
}
|
test_images/cat.jpg
ADDED
![]() |
test_yolob8_tflite.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Wed Oct 4 16:44:12 2023
|
5 |
+
|
6 |
+
@author: lin
|
7 |
+
"""
|
8 |
+
import glob
|
9 |
+
import sys
|
10 |
+
sys.path.append('../../..')
|
11 |
+
import os
|
12 |
+
import cv2
|
13 |
+
import json
|
14 |
+
import tensorflow as tf
|
15 |
+
import numpy as np
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
# from utils.bbox_op import non_max_supression
|
18 |
+
|
19 |
+
def one_multiple_iou(box, boxes, box_area, boxes_area):
|
20 |
+
"""
|
21 |
+
Compute the intersection over union. 1 to multiple
|
22 |
+
Inputs:
|
23 |
+
box: numpy array with 1 box, ymin, xmin, ymax, xmax
|
24 |
+
boxes: numpy array with shape [N, 4] holding N boxes
|
25 |
+
|
26 |
+
Outputs:
|
27 |
+
a numpy array with shape [N*1] representing box areas
|
28 |
+
"""
|
29 |
+
|
30 |
+
# this is the iou of the box against all other boxes
|
31 |
+
assert boxes.shape[0] == boxes_area.shape[0]
|
32 |
+
|
33 |
+
ymin = np.maximum(box[0], boxes[:, 0]) # bottom
|
34 |
+
xmin = np.maximum(box[1], boxes[:, 1]) # left
|
35 |
+
ymax = np.minimum(box[2], boxes[:, 2]) # top
|
36 |
+
xmax = np.minimum(box[3], boxes[:, 3]) # rifht
|
37 |
+
|
38 |
+
# we ignore areas where the intersection side would be negative
|
39 |
+
# this is done by using maxing the side length by 0
|
40 |
+
intersections = np.maximum(ymax - ymin, 0) * np.maximum(xmax - xmin, 0)
|
41 |
+
# each union is then the box area
|
42 |
+
# added to each other box area minusing their intersection calculated above
|
43 |
+
unions = box_area + boxes_area - intersections
|
44 |
+
# element wise division
|
45 |
+
# if the intersection is 0, then their ratio is 0
|
46 |
+
ious = intersections / unions
|
47 |
+
return ious
|
48 |
+
def select_non_overlapping_bboxes(boxes, scores, iou_th):
|
49 |
+
ymin = boxes[:, 0]
|
50 |
+
ymax = boxes[:, 2]
|
51 |
+
xmin = boxes[:, 1]
|
52 |
+
xmax = boxes[:, 3]
|
53 |
+
|
54 |
+
# box coordinate ranges are inclusive-inclusive
|
55 |
+
areas = (ymax - ymin) * (xmax - xmin)
|
56 |
+
scores_indexes = list(np.argsort(scores))
|
57 |
+
keep_idx = []
|
58 |
+
while len(scores_indexes) > 0:
|
59 |
+
index = scores_indexes.pop()
|
60 |
+
keep_idx.append(index)
|
61 |
+
|
62 |
+
ious = one_multiple_iou(
|
63 |
+
boxes[index], boxes[scores_indexes], areas[index], areas[scores_indexes]
|
64 |
+
)
|
65 |
+
filtered_indexes = set((ious > iou_th).nonzero()[0])
|
66 |
+
|
67 |
+
scores_indexes = [
|
68 |
+
v for (i, v) in enumerate(scores_indexes) if i not in filtered_indexes
|
69 |
+
]
|
70 |
+
return keep_idx
|
71 |
+
def non_max_supression(boxes, scores, classes, iou_th):
|
72 |
+
"""
|
73 |
+
remover overlaped boundingboxes. Starting by the box with the highest score
|
74 |
+
if the iou is greater than the threshold, remove it, else keep it.
|
75 |
+
Inputs:
|
76 |
+
boxes: numpy array with shape [N, 4] holding N boxes。 [ymin, xmin, ymax, xmax]
|
77 |
+
scores: numpy array with shape [N, 1] holding the prediction score of each box
|
78 |
+
classes: numpy array with shape [N, 1] holding the class that each box belongs
|
79 |
+
iou_th: intersection over union threshold to consider the overlapping boxes have detect 2 objects
|
80 |
+
Output:
|
81 |
+
boxes, scores, classes with intersection over union ratio less than the threshold.
|
82 |
+
|
83 |
+
"""
|
84 |
+
# assert boxes.shape[0] == scores.shape[0]
|
85 |
+
if len(scores) == 0:
|
86 |
+
return boxes, scores, classes
|
87 |
+
keep_idx = select_non_overlapping_bboxes(boxes, scores, iou_th)
|
88 |
+
|
89 |
+
return boxes[keep_idx], scores[keep_idx], classes[keep_idx]
|
90 |
+
|
91 |
+
def preprocess(img_path):
|
92 |
+
image_np = cv2.imread(img_path)
|
93 |
+
|
94 |
+
image_np = center_crop(image_np)
|
95 |
+
|
96 |
+
image_np = cv2.resize(image_np, (640, 640))
|
97 |
+
#image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
98 |
+
image_np = image_np.astype(float)
|
99 |
+
image_np /= 255.0
|
100 |
+
return image_np
|
101 |
+
|
102 |
+
def center_crop(img):
|
103 |
+
width, height = img.shape[1], img.shape[0]
|
104 |
+
|
105 |
+
crop_size = width if width < height else height
|
106 |
+
|
107 |
+
mid_x, mid_y = int(width/2), int(height/2)
|
108 |
+
|
109 |
+
cs2 = int(crop_size/2)
|
110 |
+
crop_img = img[mid_y-cs2:mid_y+cs2, mid_x-cs2:mid_x+cs2]
|
111 |
+
|
112 |
+
return crop_img
|
113 |
+
|
114 |
+
def postprocess_prediction(preds):
|
115 |
+
|
116 |
+
bboxes = preds[0][:4]
|
117 |
+
class_prob = preds[0, 4:]
|
118 |
+
classes = np.argmax(class_prob, axis=0)
|
119 |
+
scores = np.max(class_prob, axis=0)
|
120 |
+
# filter by threshold
|
121 |
+
valid_idx = np.where(scores>=min_th)[0]
|
122 |
+
bboxes = bboxes[:, valid_idx]
|
123 |
+
classes = classes[valid_idx]
|
124 |
+
scores = scores[valid_idx]
|
125 |
+
bboxes = bboxes.transpose()
|
126 |
+
bboxes = bboxes*640
|
127 |
+
xmin = bboxes[:,0]-bboxes[:,2]//2
|
128 |
+
xmax = bboxes[:,0]+bboxes[:,2]//2
|
129 |
+
ymin = bboxes[:,1]-bboxes[:,3]//2
|
130 |
+
ymax = bboxes[:,1]+bboxes[:,3]//2
|
131 |
+
xmin = np.clip(xmin, 0, 640)
|
132 |
+
ymin = np.clip(ymin, 0, 640)
|
133 |
+
|
134 |
+
bboxes = np.vstack([ymin, xmin, ymax, xmax])
|
135 |
+
bboxes = bboxes.transpose()
|
136 |
+
bboxes = bboxes.astype(int)
|
137 |
+
|
138 |
+
bboxes, scores, classes = non_max_supression(bboxes, scores, classes, iou_th=0.5)
|
139 |
+
idx = np.argsort(scores)[::-1]
|
140 |
+
bboxes = bboxes[idx]
|
141 |
+
classes = classes[idx]
|
142 |
+
scores = scores[idx]
|
143 |
+
return bboxes, classes, scores
|
144 |
+
|
145 |
+
def plot_prediction(image_np, bboxes, classes, scores, label_map):
|
146 |
+
color=(255,0,0)
|
147 |
+
thickness=5
|
148 |
+
font_scale=3
|
149 |
+
|
150 |
+
for i, box in enumerate(bboxes):
|
151 |
+
box = bboxes[i, :]
|
152 |
+
|
153 |
+
ymin, xmin, ymax, xmax = box
|
154 |
+
|
155 |
+
image_np = cv2.rectangle(image_np, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)
|
156 |
+
text_x = xmin - 10 if xmin > 20 else xmin + 10
|
157 |
+
text_y = ymin - 10 if ymin > 20 else ymin + 10
|
158 |
+
display_str = label_map[str(classes[i])]
|
159 |
+
|
160 |
+
cv2.putText(
|
161 |
+
image_np,
|
162 |
+
display_str,
|
163 |
+
(text_x, text_y),
|
164 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
165 |
+
font_scale,
|
166 |
+
color,
|
167 |
+
thickness,
|
168 |
+
)
|
169 |
+
plt.imshow(image_np)
|
170 |
+
plt.show()
|
171 |
+
|
172 |
+
def predict_yolo_tflite(intenpreter, image_np):
|
173 |
+
input_tensor = np.expand_dims(image_np, axis=0)
|
174 |
+
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.float32)
|
175 |
+
|
176 |
+
interpreter.set_tensor(input_details[0]['index'], input_tensor.numpy())
|
177 |
+
|
178 |
+
interpreter.invoke()
|
179 |
+
preds = interpreter.get_tensor(output_details[0]['index'])
|
180 |
+
return preds
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
min_th = 0.1
|
184 |
+
labels_json = "coco_labels.json"
|
185 |
+
with open(labels_json) as f:
|
186 |
+
label_map = json.load(f)
|
187 |
+
img_path = "test_images"
|
188 |
+
saved_tflite = "tflite_model.tflite"
|
189 |
+
# load model
|
190 |
+
interpreter = tf.lite.Interpreter(model_path=saved_tflite)
|
191 |
+
interpreter.allocate_tensors()
|
192 |
+
input_details = interpreter.get_input_details()
|
193 |
+
output_details = interpreter.get_output_details()
|
194 |
+
print(input_details)
|
195 |
+
print(output_details)
|
196 |
+
images = glob.glob(os.path.join(img_path, "*"))
|
197 |
+
for img in images:
|
198 |
+
image_np = preprocess(img)
|
199 |
+
print(image_np.shape)
|
200 |
+
|
201 |
+
# image_np = np.array(Image.open(image_path))
|
202 |
+
preds = predict_yolo_tflite(interpreter, image_np)
|
203 |
+
bboxes, classes, scores = postprocess_prediction(preds)
|
204 |
+
|
205 |
+
plot_prediction(image_np, bboxes, classes, scores, label_map)
|