Jaime García Villena
commited on
Commit
·
0e67cc0
1
Parent(s):
c7ed5ff
Properly name the architecture.
Browse files- config.json +2 -2
- scripts/coco_labels.json +0 -82
- scripts/test_yolob8_tflite.py +0 -205
- scripts/yolov8n.onnx +0 -3
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"id2label": {
|
6 |
"0": "person",
|
@@ -91,7 +91,7 @@
|
|
91 |
"output_stride": 32,
|
92 |
"semantic_loss_ignore_index": 255,
|
93 |
"tf_padding": true,
|
94 |
-
"model_type": "
|
95 |
"torch_dtype": "float32",
|
96 |
"transformers_version": "4.33.3"
|
97 |
}
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"Yolov8ForObjectDetection"
|
4 |
],
|
5 |
"id2label": {
|
6 |
"0": "person",
|
|
|
91 |
"output_stride": 32,
|
92 |
"semantic_loss_ignore_index": 255,
|
93 |
"tf_padding": true,
|
94 |
+
"model_type": "yolov8",
|
95 |
"torch_dtype": "float32",
|
96 |
"transformers_version": "4.33.3"
|
97 |
}
|
scripts/coco_labels.json
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"0": "person",
|
3 |
-
"1": "bicycle",
|
4 |
-
"2": "car",
|
5 |
-
"3": "motorcycle",
|
6 |
-
"4": "airplane",
|
7 |
-
"5": "bus",
|
8 |
-
"6": "train",
|
9 |
-
"7": "truck",
|
10 |
-
"8": "boat",
|
11 |
-
"9": "traffic light",
|
12 |
-
"10": "fire hydrant",
|
13 |
-
"11": "stop sign",
|
14 |
-
"12": "parking meter",
|
15 |
-
"13": "bench",
|
16 |
-
"14": "bird",
|
17 |
-
"15": "cat",
|
18 |
-
"16": "dog",
|
19 |
-
"17": "horse",
|
20 |
-
"18": "sheep",
|
21 |
-
"19": "cow",
|
22 |
-
"20": "elephant",
|
23 |
-
"21": "bear",
|
24 |
-
"22": "zebra",
|
25 |
-
"23": "giraffe",
|
26 |
-
"24": "backpack",
|
27 |
-
"25": "umbrella",
|
28 |
-
"26": "handbag",
|
29 |
-
"27": "tie",
|
30 |
-
"28": "suitcase",
|
31 |
-
"29": "frisbee",
|
32 |
-
"30": "skis",
|
33 |
-
"31": "snowboard",
|
34 |
-
"32": "sports ball",
|
35 |
-
"33": "kite",
|
36 |
-
"34": "baseball bat",
|
37 |
-
"35": "baseball glove",
|
38 |
-
"36": "skateboard",
|
39 |
-
"37": "surfboard",
|
40 |
-
"38": "tennis racket",
|
41 |
-
"39": "bottle",
|
42 |
-
"40": "wine glass",
|
43 |
-
"41": "cup",
|
44 |
-
"42": "fork",
|
45 |
-
"43": "knife",
|
46 |
-
"44": "spoon",
|
47 |
-
"45": "bowl",
|
48 |
-
"46": "banana",
|
49 |
-
"47": "apple",
|
50 |
-
"48": "sandwich",
|
51 |
-
"49": "orange",
|
52 |
-
"50": "broccoli",
|
53 |
-
"51": "carrot",
|
54 |
-
"52": "hot dog",
|
55 |
-
"53": "pizza",
|
56 |
-
"54": "donut",
|
57 |
-
"55": "cake",
|
58 |
-
"56": "chair",
|
59 |
-
"57": "couch",
|
60 |
-
"58": "potted plant",
|
61 |
-
"59": "bed",
|
62 |
-
"60": "dining table",
|
63 |
-
"61": "toilet",
|
64 |
-
"62": "tv",
|
65 |
-
"63": "laptop",
|
66 |
-
"64": "mouse",
|
67 |
-
"65": "remote",
|
68 |
-
"66": "keyboard",
|
69 |
-
"67": "cell phone",
|
70 |
-
"68": "microwave",
|
71 |
-
"69": "oven",
|
72 |
-
"70": "toaster",
|
73 |
-
"71": "sink",
|
74 |
-
"72": "refrigerator",
|
75 |
-
"73": "book",
|
76 |
-
"74": "clock",
|
77 |
-
"75": "vase",
|
78 |
-
"76": "scissors",
|
79 |
-
"77": "teddy bear",
|
80 |
-
"78": "hair drier",
|
81 |
-
"79": "toothbrush"
|
82 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/test_yolob8_tflite.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
"""
|
4 |
-
Created on Wed Oct 4 16:44:12 2023
|
5 |
-
|
6 |
-
@author: lin
|
7 |
-
"""
|
8 |
-
import glob
|
9 |
-
import sys
|
10 |
-
sys.path.append('../../..')
|
11 |
-
import os
|
12 |
-
import cv2
|
13 |
-
import json
|
14 |
-
import tensorflow as tf
|
15 |
-
import numpy as np
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
# from utils.bbox_op import non_max_supression
|
18 |
-
|
19 |
-
def one_multiple_iou(box, boxes, box_area, boxes_area):
|
20 |
-
"""
|
21 |
-
Compute the intersection over union. 1 to multiple
|
22 |
-
Inputs:
|
23 |
-
box: numpy array with 1 box, ymin, xmin, ymax, xmax
|
24 |
-
boxes: numpy array with shape [N, 4] holding N boxes
|
25 |
-
|
26 |
-
Outputs:
|
27 |
-
a numpy array with shape [N*1] representing box areas
|
28 |
-
"""
|
29 |
-
|
30 |
-
# this is the iou of the box against all other boxes
|
31 |
-
assert boxes.shape[0] == boxes_area.shape[0]
|
32 |
-
|
33 |
-
ymin = np.maximum(box[0], boxes[:, 0]) # bottom
|
34 |
-
xmin = np.maximum(box[1], boxes[:, 1]) # left
|
35 |
-
ymax = np.minimum(box[2], boxes[:, 2]) # top
|
36 |
-
xmax = np.minimum(box[3], boxes[:, 3]) # rifht
|
37 |
-
|
38 |
-
# we ignore areas where the intersection side would be negative
|
39 |
-
# this is done by using maxing the side length by 0
|
40 |
-
intersections = np.maximum(ymax - ymin, 0) * np.maximum(xmax - xmin, 0)
|
41 |
-
# each union is then the box area
|
42 |
-
# added to each other box area minusing their intersection calculated above
|
43 |
-
unions = box_area + boxes_area - intersections
|
44 |
-
# element wise division
|
45 |
-
# if the intersection is 0, then their ratio is 0
|
46 |
-
ious = intersections / unions
|
47 |
-
return ious
|
48 |
-
def select_non_overlapping_bboxes(boxes, scores, iou_th):
|
49 |
-
ymin = boxes[:, 0]
|
50 |
-
ymax = boxes[:, 2]
|
51 |
-
xmin = boxes[:, 1]
|
52 |
-
xmax = boxes[:, 3]
|
53 |
-
|
54 |
-
# box coordinate ranges are inclusive-inclusive
|
55 |
-
areas = (ymax - ymin) * (xmax - xmin)
|
56 |
-
scores_indexes = list(np.argsort(scores))
|
57 |
-
keep_idx = []
|
58 |
-
while len(scores_indexes) > 0:
|
59 |
-
index = scores_indexes.pop()
|
60 |
-
keep_idx.append(index)
|
61 |
-
|
62 |
-
ious = one_multiple_iou(
|
63 |
-
boxes[index], boxes[scores_indexes], areas[index], areas[scores_indexes]
|
64 |
-
)
|
65 |
-
filtered_indexes = set((ious > iou_th).nonzero()[0])
|
66 |
-
|
67 |
-
scores_indexes = [
|
68 |
-
v for (i, v) in enumerate(scores_indexes) if i not in filtered_indexes
|
69 |
-
]
|
70 |
-
return keep_idx
|
71 |
-
def non_max_supression(boxes, scores, classes, iou_th):
|
72 |
-
"""
|
73 |
-
remover overlaped boundingboxes. Starting by the box with the highest score
|
74 |
-
if the iou is greater than the threshold, remove it, else keep it.
|
75 |
-
Inputs:
|
76 |
-
boxes: numpy array with shape [N, 4] holding N boxes。 [ymin, xmin, ymax, xmax]
|
77 |
-
scores: numpy array with shape [N, 1] holding the prediction score of each box
|
78 |
-
classes: numpy array with shape [N, 1] holding the class that each box belongs
|
79 |
-
iou_th: intersection over union threshold to consider the overlapping boxes have detect 2 objects
|
80 |
-
Output:
|
81 |
-
boxes, scores, classes with intersection over union ratio less than the threshold.
|
82 |
-
|
83 |
-
"""
|
84 |
-
# assert boxes.shape[0] == scores.shape[0]
|
85 |
-
if len(scores) == 0:
|
86 |
-
return boxes, scores, classes
|
87 |
-
keep_idx = select_non_overlapping_bboxes(boxes, scores, iou_th)
|
88 |
-
|
89 |
-
return boxes[keep_idx], scores[keep_idx], classes[keep_idx]
|
90 |
-
|
91 |
-
def preprocess(img_path):
|
92 |
-
image_np = cv2.imread(img_path)
|
93 |
-
|
94 |
-
image_np = center_crop(image_np)
|
95 |
-
|
96 |
-
image_np = cv2.resize(image_np, (640, 640))
|
97 |
-
#image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
98 |
-
image_np = image_np.astype(float)
|
99 |
-
image_np /= 255.0
|
100 |
-
return image_np
|
101 |
-
|
102 |
-
def center_crop(img):
|
103 |
-
width, height = img.shape[1], img.shape[0]
|
104 |
-
|
105 |
-
crop_size = width if width < height else height
|
106 |
-
|
107 |
-
mid_x, mid_y = int(width/2), int(height/2)
|
108 |
-
|
109 |
-
cs2 = int(crop_size/2)
|
110 |
-
crop_img = img[mid_y-cs2:mid_y+cs2, mid_x-cs2:mid_x+cs2]
|
111 |
-
|
112 |
-
return crop_img
|
113 |
-
|
114 |
-
def postprocess_prediction(preds):
|
115 |
-
|
116 |
-
bboxes = preds[0][:4]
|
117 |
-
class_prob = preds[0, 4:]
|
118 |
-
classes = np.argmax(class_prob, axis=0)
|
119 |
-
scores = np.max(class_prob, axis=0)
|
120 |
-
# filter by threshold
|
121 |
-
valid_idx = np.where(scores>=min_th)[0]
|
122 |
-
bboxes = bboxes[:, valid_idx]
|
123 |
-
classes = classes[valid_idx]
|
124 |
-
scores = scores[valid_idx]
|
125 |
-
bboxes = bboxes.transpose()
|
126 |
-
bboxes = bboxes*640
|
127 |
-
xmin = bboxes[:,0]-bboxes[:,2]//2
|
128 |
-
xmax = bboxes[:,0]+bboxes[:,2]//2
|
129 |
-
ymin = bboxes[:,1]-bboxes[:,3]//2
|
130 |
-
ymax = bboxes[:,1]+bboxes[:,3]//2
|
131 |
-
xmin = np.clip(xmin, 0, 640)
|
132 |
-
ymin = np.clip(ymin, 0, 640)
|
133 |
-
|
134 |
-
bboxes = np.vstack([ymin, xmin, ymax, xmax])
|
135 |
-
bboxes = bboxes.transpose()
|
136 |
-
bboxes = bboxes.astype(int)
|
137 |
-
|
138 |
-
bboxes, scores, classes = non_max_supression(bboxes, scores, classes, iou_th=0.5)
|
139 |
-
idx = np.argsort(scores)[::-1]
|
140 |
-
bboxes = bboxes[idx]
|
141 |
-
classes = classes[idx]
|
142 |
-
scores = scores[idx]
|
143 |
-
return bboxes, classes, scores
|
144 |
-
|
145 |
-
def plot_prediction(image_np, bboxes, classes, scores, label_map):
|
146 |
-
color=(255,0,0)
|
147 |
-
thickness=5
|
148 |
-
font_scale=3
|
149 |
-
|
150 |
-
for i, box in enumerate(bboxes):
|
151 |
-
box = bboxes[i, :]
|
152 |
-
|
153 |
-
ymin, xmin, ymax, xmax = box
|
154 |
-
|
155 |
-
image_np = cv2.rectangle(image_np, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)
|
156 |
-
text_x = xmin - 10 if xmin > 20 else xmin + 10
|
157 |
-
text_y = ymin - 10 if ymin > 20 else ymin + 10
|
158 |
-
display_str = label_map[str(classes[i])]
|
159 |
-
|
160 |
-
cv2.putText(
|
161 |
-
image_np,
|
162 |
-
display_str,
|
163 |
-
(text_x, text_y),
|
164 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
165 |
-
font_scale,
|
166 |
-
color,
|
167 |
-
thickness,
|
168 |
-
)
|
169 |
-
plt.imshow(image_np)
|
170 |
-
plt.show()
|
171 |
-
|
172 |
-
def predict_yolo_tflite(intenpreter, image_np):
|
173 |
-
input_tensor = np.expand_dims(image_np, axis=0)
|
174 |
-
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.float32)
|
175 |
-
|
176 |
-
interpreter.set_tensor(input_details[0]['index'], input_tensor.numpy())
|
177 |
-
|
178 |
-
interpreter.invoke()
|
179 |
-
preds = interpreter.get_tensor(output_details[0]['index'])
|
180 |
-
return preds
|
181 |
-
|
182 |
-
if __name__ == "__main__":
|
183 |
-
min_th = 0.1
|
184 |
-
labels_json = "coco_labels.json"
|
185 |
-
with open(labels_json) as f:
|
186 |
-
label_map = json.load(f)
|
187 |
-
img_path = "test_images"
|
188 |
-
saved_tflite = "tflite_model.tflite"
|
189 |
-
# load model
|
190 |
-
interpreter = tf.lite.Interpreter(model_path=saved_tflite)
|
191 |
-
interpreter.allocate_tensors()
|
192 |
-
input_details = interpreter.get_input_details()
|
193 |
-
output_details = interpreter.get_output_details()
|
194 |
-
print(input_details)
|
195 |
-
print(output_details)
|
196 |
-
images = glob.glob(os.path.join(img_path, "*"))
|
197 |
-
for img in images:
|
198 |
-
image_np = preprocess(img)
|
199 |
-
print(image_np.shape)
|
200 |
-
|
201 |
-
# image_np = np.array(Image.open(image_path))
|
202 |
-
preds = predict_yolo_tflite(interpreter, image_np)
|
203 |
-
bboxes, classes, scores = postprocess_prediction(preds)
|
204 |
-
|
205 |
-
plot_prediction(image_np, bboxes, classes, scores, label_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/yolov8n.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dd48a79dd7fec8ca25fde4eca742ff7bca23b27e2e903eb23bc1d9f83a459bd2
|
3 |
-
size 12769720
|
|
|
|
|
|
|
|