Splend1dchan commited on
Commit
a4f73be
1 Parent(s): 9f63606
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - librispeech_asr
5
+ tags:
6
+ - speech
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - hf-asr-leaderboard
10
+ license: apache-2.0
11
+ model-index:
12
+ - name: wav2vec2-large-10min-lv60
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Librispeech (clean)
19
+ type: librispeech_asr
20
+ args: en
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: None
25
+ ---
26
+ # Wav2Vec2-Large-10min-Lv60 + Self-Training
27
+
28
+ [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)
29
+
30
+ The large model pretrained and fine-tuned on 10min of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz.
31
+
32
+ [Paper](https://arxiv.org/abs/2006.11477)
33
+
34
+ Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
35
+
36
+ **Abstract**
37
+
38
+ They show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
39
+
40
+ The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
41
+
42
+
43
+ # Usage
44
+
45
+ To transcribe audio files the model can be used as a standalone acoustic model as follows:
46
+
47
+ ```python
48
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
49
+ from datasets import load_dataset
50
+ import torch
51
+
52
+ # load model and processor
53
+ processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self")
54
+ model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self")
55
+
56
+ # load dummy dataset and read soundfiles
57
+ ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
58
+
59
+ # tokenize
60
+ input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
61
+
62
+ # retrieve logits
63
+ logits = model(input_values).logits
64
+
65
+ # take argmax and decode
66
+ predicted_ids = torch.argmax(logits, dim=-1)
67
+ transcription = processor.batch_decode(predicted_ids)
68
+ ```
69
+
70
+ ## Evaluation
71
+
72
+ This code snippet shows how to evaluate facebook's **Splend1dchan/wav2vec2-large-10min-lv60-self** on LibriSpeech's "clean" and "other" test data.
73
+
74
+ ```python
75
+ from datasets import load_dataset
76
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
77
+ import torch
78
+ from jiwer import wer
79
+ librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
80
+ model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self").to("cuda")
81
+ processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-10min-lv60-self")
82
+ def map_to_pred(batch):
83
+ inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
84
+ input_values = inputs.input_values.to("cuda")
85
+ attention_mask = inputs.attention_mask.to("cuda")
86
+
87
+ with torch.no_grad():
88
+ logits = model(input_values, attention_mask=attention_mask).logits
89
+ predicted_ids = torch.argmax(logits, dim=-1)
90
+ transcription = processor.batch_decode(predicted_ids)
91
+ batch["transcription"] = transcription
92
+ return batch
93
+ result = librispeech_eval.map(map_to_pred, remove_columns=["speech"])
94
+ print("WER:", wer(result["text"], result["transcription"]))
95
+ ```
96
+
97
+ <!-- *Result (WER)*:
98
+
99
+ | "clean" | "other" |
100
+ |---|---|
101
+ | untested | untested | -->
config.json ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-960h-lv60-self",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 256,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "sum",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.1,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.1,
55
+ "gradient_checkpointing": false,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_dropout_prob": 0.1,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.1,
64
+ "mask_feature_length": 10,
65
+ "mask_feature_min_masks": 0,
66
+ "mask_feature_prob": 0.0,
67
+ "mask_time_length": 10,
68
+ "mask_time_min_masks": 2,
69
+ "mask_time_prob": 0.05,
70
+ "model_type": "wav2vec2",
71
+ "num_adapter_layers": 3,
72
+ "num_attention_heads": 16,
73
+ "num_codevector_groups": 2,
74
+ "num_codevectors_per_group": 320,
75
+ "num_conv_pos_embedding_groups": 16,
76
+ "num_conv_pos_embeddings": 128,
77
+ "num_feat_extract_layers": 7,
78
+ "num_hidden_layers": 24,
79
+ "num_negatives": 100,
80
+ "output_hidden_size": 1024,
81
+ "pad_token_id": 0,
82
+ "proj_codevector_dim": 256,
83
+ "tdnn_dilation": [
84
+ 1,
85
+ 2,
86
+ 3,
87
+ 1,
88
+ 1
89
+ ],
90
+ "tdnn_dim": [
91
+ 512,
92
+ 512,
93
+ 512,
94
+ 512,
95
+ 1500
96
+ ],
97
+ "tdnn_kernel": [
98
+ 5,
99
+ 3,
100
+ 3,
101
+ 1,
102
+ 1
103
+ ],
104
+ "torch_dtype": "float32",
105
+ "transformers_version": "4.17.0",
106
+ "use_weighted_layer_sum": false,
107
+ "vocab_size": 32,
108
+ "xvector_output_dim": 512
109
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d078bb8464eb340e9f2e9df36fcf77590afdaa68af9ca7fbe22f5fea4dbcc76
3
+ size 1262051569
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "return_attention_mask": true, "do_normalize": true, "special_tokens_map_file": "/home/splend1d/.cache/huggingface/transformers/de1143309c04207e22168c4563b24770c49eb4e933dbad506eadae8e43a7b422.9d6cd81ef646692fb1c169a880161ea1cb95f49694f220aced9b704b457e51dd", "name_or_path": "facebook/wav2vec2-large-960h-lv60-self", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2Processor"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}