Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## How to Load and Use the Model
|
3 |
+
To use the model:
|
4 |
+
|
5 |
+
1. Install required libraries: torch and transformers
|
6 |
+
2. Use the following code:
|
7 |
+
|
8 |
+
```python
|
9 |
+
# Load model directly
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("Sourabh2/Chemistry_elements", trust_remote_code=True)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("Sourabh2/Chemistry_elements", trust_remote_code=True)
|
14 |
+
# Set up the device (GPU if available, otherwise CPU)
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model = model.to(device)
|
17 |
+
# Example usage
|
18 |
+
messages = [
|
19 |
+
{
|
20 |
+
"role": "user",
|
21 |
+
"content": "hydrogen"
|
22 |
+
}
|
23 |
+
]
|
24 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
25 |
+
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True)
|
26 |
+
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
|
27 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
print(text.split("assistant")[1])
|
29 |
+
# Decode and print output
|
30 |
+
['Symbol: H', 'Atomic_Number: 1', 'Atomic_Weight: 1.008', 'Density: 0.0899', 'Melting_Point: 14.01', 'Boiling_Point: 20.28', 'Phase: Gas', 'Absolute_Melting_Point: 14.01']
|