Tianhao Wang
commited on
Commit
·
dbbd709
1
Parent(s):
ec45755
first commit
Browse files- .gitattributes +2 -0
- .gitignore +5 -0
- README.md +1 -0
- data_engine_processing/calc_resdr.py +104 -0
- data_engine_processing/filter_threshold.py +35 -0
- dataset.py +288 -0
- eval.py +161 -0
- eval.sh +14 -0
- experiments/ClearSep_audioset_32k/config.json +3 -0
- helpers/__init__.py +0 -0
- helpers/utils.py +205 -0
- infer_data_engine.sh +15 -0
- infer_data_engine_json.py +143 -0
- metadata/audioset/audioset_label.csv +3 -0
- metadata/audioset/class_labels_indices.csv +3 -0
- metadata/audioset/eval_lst.csv +3 -0
- metadata/audioset/ontology.json +3 -0
- metadata/audioset/train_lst.csv +3 -0
- metadata/data_engine_json/audioset_iter2_train_data_engine_th10.json +3 -0
- metadata/data_engine_json/audioset_iter2_train_data_engine_th15.json +3 -0
- metadata/data_engine_meta/child_label/bal_train_segments.json +3 -0
- metadata/data_engine_meta/child_label/bal_train_segments_multi_label.json +3 -0
- metadata/data_engine_meta/child_label/eval_segments.json +3 -0
- metadata/data_engine_meta/child_label/unbal_train_segments.json +3 -0
- metadata/data_engine_meta/child_label/unbal_train_segments_multi_label.json +3 -0
- metadata/evaluation/audiocaps_caption_eval.csv +3 -0
- metadata/evaluation/audiocaps_label_eval.csv +3 -0
- metadata/evaluation/audiocaps_label_eval_sep_silence_test.csv +3 -0
- metadata/evaluation/audioset_eval.csv +3 -0
- metadata/evaluation/audioset_single_eval.csv +3 -0
- metadata/evaluation/esc_eval.csv +3 -0
- metadata/evaluation/esc_eval_samples.csv +3 -0
- metadata/training/audiocaps_caption_32k_train.csv +3 -0
- metadata/training/audiocaps_caption_32k_val.csv +3 -0
- metadata/training/audiocaps_label_32k_train_sep.csv +3 -0
- metadata/training/audiocaps_label_32k_val_sep.csv +3 -0
- metadata/training/audioset_32k_train_sep.csv +3 -0
- metadata/training/audioset_32k_train_sep_th10_iter2.csv +3 -0
- metadata/training/audioset_32k_train_sep_th15_iter2.csv +3 -0
- metadata/training/audioset_32k_val_sep.csv +3 -0
- model/CLAPSep.py +229 -0
- model/CLAPSep_decoder.py +605 -0
- model/CLAPSep_infer.py +233 -0
- model/__init__.py +0 -0
- requirements.txt +13 -0
- run.sh +11 -0
- train.py +118 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
|
| 3 |
+
checkpoints
|
| 4 |
+
lightning_logs
|
| 5 |
+
music_audioset_epoch_15_esc_90.14.pt
|
README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# ClearSep
|
data_engine_processing/calc_resdr.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import glob
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import torch
|
| 6 |
+
import torchaudio
|
| 7 |
+
from torchmetrics.audio import ScaleInvariantSignalDistortionRatio, SignalDistortionRatio
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def calculate_sdr_and_sisdr(original_audio_path, separated_audio_paths):
|
| 11 |
+
"""
|
| 12 |
+
计算叠加的音频与原始音频之间的 SDR 和 SI-SDR。
|
| 13 |
+
|
| 14 |
+
参数:
|
| 15 |
+
- original_audio_path: str, 原始音频文件路径。
|
| 16 |
+
- separated_audio_paths: List[str], 分割后的音频片段文件路径列表。
|
| 17 |
+
|
| 18 |
+
返回:
|
| 19 |
+
- sdr: float, SDR 值。
|
| 20 |
+
- sisdr: float, SI-SDR 值。
|
| 21 |
+
"""
|
| 22 |
+
# 加载原始音频
|
| 23 |
+
original_waveform, sample_rate = torchaudio.load(original_audio_path)
|
| 24 |
+
|
| 25 |
+
# 初始化叠加的音频波形
|
| 26 |
+
combined_waveform = None
|
| 27 |
+
|
| 28 |
+
# 加载并叠加分割的音频片段
|
| 29 |
+
for path in separated_audio_paths:
|
| 30 |
+
separated_waveform, _ = torchaudio.load(path)
|
| 31 |
+
|
| 32 |
+
# 对齐片段长度
|
| 33 |
+
min_length = min(original_waveform.size(1), separated_waveform.size(1))
|
| 34 |
+
separated_waveform = separated_waveform[:, :min_length]
|
| 35 |
+
|
| 36 |
+
# 初始化或叠加音频
|
| 37 |
+
if combined_waveform is None:
|
| 38 |
+
combined_waveform = separated_waveform
|
| 39 |
+
else:
|
| 40 |
+
combined_waveform = combined_waveform[:, :min_length] + separated_waveform
|
| 41 |
+
|
| 42 |
+
# 确保合并后的音频和原始音频的长度一致
|
| 43 |
+
min_length = min(original_waveform.size(1), combined_waveform.size(1))
|
| 44 |
+
original_waveform = original_waveform[:, :min_length]
|
| 45 |
+
combined_waveform = combined_waveform[:, :min_length]
|
| 46 |
+
|
| 47 |
+
# 计算 SI-SDR
|
| 48 |
+
sisdr_metric = ScaleInvariantSignalDistortionRatio()
|
| 49 |
+
sisdr = sisdr_metric(combined_waveform, original_waveform).item()
|
| 50 |
+
|
| 51 |
+
# 计算 SDR
|
| 52 |
+
sdr_metric = SignalDistortionRatio()
|
| 53 |
+
sdr = sdr_metric(combined_waveform, original_waveform).item()
|
| 54 |
+
|
| 55 |
+
# print(f"SI-SDR between original and combined audio: {sisdr} dB")
|
| 56 |
+
# print(f"SDR between original and combined audio: {sdr} dB")
|
| 57 |
+
|
| 58 |
+
return sdr, sisdr
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
# 示例: 指定原始音频和分割后的音频片段路径
|
| 63 |
+
# original_audio_path = "path_to_original_audio.wav"
|
| 64 |
+
# separated_audio_paths = [
|
| 65 |
+
# "path_to_segment_1.wav",
|
| 66 |
+
# "path_to_segment_2.wav",
|
| 67 |
+
# "path_to_segment_3.wav",
|
| 68 |
+
# ]
|
| 69 |
+
|
| 70 |
+
# # 计算 SDR 和 SI-SDR
|
| 71 |
+
# sdr, sisdr = calculate_sdr_and_sisdr(original_audio_path, separated_audio_paths)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
dset = 'balanced_train_segments'
|
| 75 |
+
# dset = 'eval_segments'
|
| 76 |
+
|
| 77 |
+
src_data_root = r'/data/sound/audioset/audios_32k'
|
| 78 |
+
sep_data_root = r'data_engine_infer/audioset_separation_child_label'
|
| 79 |
+
|
| 80 |
+
writer = csv.writer(open(os.path.join(sep_data_root, dset + '.csv'), 'w'))
|
| 81 |
+
writer.writerow(['video', 'sdr', 'sisdr'])
|
| 82 |
+
for video_path in tqdm(glob.glob(os.path.join(sep_data_root, dset, '*'))):
|
| 83 |
+
video = video_path.split('/')[-1]
|
| 84 |
+
original_audio_path = os.path.join(src_data_root, dset, video + '.wav')
|
| 85 |
+
separated_audio_paths = glob.glob(video_path + '/*')
|
| 86 |
+
sdr, sisdr = calculate_sdr_and_sisdr(original_audio_path, separated_audio_paths)
|
| 87 |
+
writer.writerow([video, f'{sdr:.3f}', f'{sisdr:.3f}'])
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# dset = 'unbalanced_train_segments'
|
| 91 |
+
|
| 92 |
+
# src_data_root = r'/data/sound/audioset/audios_32k'
|
| 93 |
+
# sep_data_root = r'data_engine_infer/audioset_separation_child_label'
|
| 94 |
+
|
| 95 |
+
# writer = csv.writer(open(os.path.join(sep_data_root, dset + '.csv'), 'w'))
|
| 96 |
+
# writer.writerow(['video', 'sdr', 'sisdr'])
|
| 97 |
+
# for video_path in tqdm(glob.glob(os.path.join(sep_data_root, dset, '*', '*'))):
|
| 98 |
+
# part = video_path.split('/')[-2]
|
| 99 |
+
# video = video_path.split('/')[-1]
|
| 100 |
+
# original_audio_path = os.path.join(src_data_root, dset, part, video + '.wav')
|
| 101 |
+
# separated_audio_paths = glob.glob(video_path + '/*')
|
| 102 |
+
# sdr, sisdr = calculate_sdr_and_sisdr(original_audio_path, separated_audio_paths)
|
| 103 |
+
# writer.writerow([video, f'{sdr:.3f}', f'{sisdr:.3f}'])
|
| 104 |
+
|
data_engine_processing/filter_threshold.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import glob
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
audioset_labels = set()
|
| 8 |
+
reader = csv.reader(open('metadata/audioset/class_labels_indices.csv', 'r'))
|
| 9 |
+
next(reader)
|
| 10 |
+
for item in reader:
|
| 11 |
+
assert len(item) == 3
|
| 12 |
+
audioset_labels.add(item[-1])
|
| 13 |
+
|
| 14 |
+
sdr_dict = dict()
|
| 15 |
+
reader = csv.reader(open('data_engine_infer/audioset_separation_child_label/balanced_train_segments.csv', 'r'))
|
| 16 |
+
next(reader)
|
| 17 |
+
for item in reader:
|
| 18 |
+
sdr_dict[item[0]] = min(float(item[1]), float(item[2]))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
writer_10 = csv.writer(open('data_engine_infer/audioset_separation_child_label/audioset_bal_data_engine_th10.csv', 'w'))
|
| 22 |
+
writer_15 = csv.writer(open('data_engine_infer/audioset_separation_child_label/audioset_bal_data_engine_th15.csv', 'w'))
|
| 23 |
+
|
| 24 |
+
for video_path in tqdm(glob.glob('data_engine_infer/audioset_separation_child_label/balanced_train_segments/*')):
|
| 25 |
+
video = video_path.split('/')[-1]
|
| 26 |
+
assert video in sdr_dict
|
| 27 |
+
if sdr_dict[video] < 10.0:
|
| 28 |
+
continue
|
| 29 |
+
for wav_path in glob.glob(video_path + '/*.wav'):
|
| 30 |
+
label = wav_path.split('/')[-1][:-4]
|
| 31 |
+
assert label in audioset_labels, f"label: {label}, wav_path: {wav_path}"
|
| 32 |
+
writer_10.writerow([wav_path, label])
|
| 33 |
+
if sdr_dict[video] >= 15.0:
|
| 34 |
+
writer_15.writerow([wav_path, label])
|
| 35 |
+
|
dataset.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :dataset_online.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2023/11/1 下午6:47
|
| 9 |
+
'''
|
| 10 |
+
import os
|
| 11 |
+
import random
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torchaudio
|
| 15 |
+
import torchaudio.transforms as AT
|
| 16 |
+
import csv
|
| 17 |
+
import json
|
| 18 |
+
import numpy as np
|
| 19 |
+
import librosa
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def labels2caption(labels):
|
| 23 |
+
prefix = "The sound of " if len(labels) == 1 else "The sounds of "
|
| 24 |
+
caption = prefix + ', '.join(labels)
|
| 25 |
+
return caption
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class CLAPSepDataSet(torch.utils.data.Dataset): # type: ignore
|
| 29 |
+
|
| 30 |
+
def __init__(self, data_list, dset='', silence_rate=0.05, chunk_dur=10, sr=None, resample_rate=None):
|
| 31 |
+
assert dset in ['train', 'val'], \
|
| 32 |
+
"`dset` must be one of ['train', 'val']"
|
| 33 |
+
self.dset = dset
|
| 34 |
+
self.silence_rate = silence_rate
|
| 35 |
+
self.chunk_dur = chunk_dur
|
| 36 |
+
self.data_meta = dict()
|
| 37 |
+
self.text_dict = dict()
|
| 38 |
+
with open(data_list, 'r', encoding='utf-8') as d:
|
| 39 |
+
reader = csv.reader(d, skipinitialspace=True)
|
| 40 |
+
for row in reader:
|
| 41 |
+
assert os.path.exists(row[0])
|
| 42 |
+
self.data_meta[row[0]] = row[1:]
|
| 43 |
+
label = ', '.join(row[1:])
|
| 44 |
+
if label not in self.text_dict:
|
| 45 |
+
self.text_dict[label] = []
|
| 46 |
+
self.text_dict[label].append(row[0])
|
| 47 |
+
# self.data_meta.pop('file_name')
|
| 48 |
+
self.augmentation = torchaudio.transforms.SpeedPerturbation(48000, [0.9, 1.1])
|
| 49 |
+
|
| 50 |
+
self.data_names = list(self.data_meta.keys())
|
| 51 |
+
if dset == 'val':
|
| 52 |
+
self.noise_names = []
|
| 53 |
+
for name in self.data_names:
|
| 54 |
+
noise_name = self.choose_other_samples(', '.join(self.data_meta[name]), 1)[0]
|
| 55 |
+
self.noise_names.append(noise_name)
|
| 56 |
+
|
| 57 |
+
if resample_rate is not None:
|
| 58 |
+
self.resampler = AT.Resample(sr, resample_rate)
|
| 59 |
+
self.sr = sr
|
| 60 |
+
self.resample_rate = resample_rate
|
| 61 |
+
else:
|
| 62 |
+
self.sr = sr
|
| 63 |
+
|
| 64 |
+
def __len__(self):
|
| 65 |
+
return len(self.data_names)
|
| 66 |
+
|
| 67 |
+
def choose_other_samples(self, target_text, num):
|
| 68 |
+
candidates = list(self.text_dict.keys())
|
| 69 |
+
candidates.remove(target_text)
|
| 70 |
+
chosen_text = random.sample(candidates, num)
|
| 71 |
+
chosen_samples = [random.choice(self.text_dict[text]) for text in chosen_text]
|
| 72 |
+
return chosen_samples
|
| 73 |
+
|
| 74 |
+
def load_wav(self, path):
|
| 75 |
+
max_length = self.sr * self.chunk_dur
|
| 76 |
+
wav = librosa.core.load(path, sr=self.sr)[0]
|
| 77 |
+
if len(wav) > max_length:
|
| 78 |
+
wav = wav[0:max_length]
|
| 79 |
+
|
| 80 |
+
# pad audio to max length, 10s for AudioCaps
|
| 81 |
+
if len(wav) < max_length:
|
| 82 |
+
wav = np.pad(wav, (0, max_length - len(wav)), 'constant')
|
| 83 |
+
return wav
|
| 84 |
+
|
| 85 |
+
def __getitem__(self, idx):
|
| 86 |
+
tgt_name = self.data_names[idx]
|
| 87 |
+
if self.dset =='train':
|
| 88 |
+
noise_name = tgt_name
|
| 89 |
+
while set(self.data_meta[noise_name]) & set(self.data_meta[tgt_name]):
|
| 90 |
+
noise_name = random.choice(self.data_names)
|
| 91 |
+
else:
|
| 92 |
+
noise_name = self.noise_names[idx]
|
| 93 |
+
|
| 94 |
+
snr = torch.zeros((1,))
|
| 95 |
+
# snr = (torch.rand((1,)) * 10 - 5) if self.dset == 'train' else torch.zeros((1,))
|
| 96 |
+
tgt = torch.tensor(self.load_wav(tgt_name)).unsqueeze(0)
|
| 97 |
+
noise = torch.tensor(self.load_wav(noise_name)).unsqueeze(0)
|
| 98 |
+
# assert not torch.isnan(tgt).any()
|
| 99 |
+
# assert not torch.isnan(noise).any()
|
| 100 |
+
mixed = torchaudio.functional.add_noise(tgt, noise, snr=snr)
|
| 101 |
+
assert not torch.isnan(mixed).any(), f"tgt: {tgt_name}, noise: {noise_name}"
|
| 102 |
+
pos_sample, _ = self.augmentation(self.resampler(tgt.squeeze()))
|
| 103 |
+
neg_sample, _ = self.augmentation(self.resampler(noise.squeeze()))
|
| 104 |
+
|
| 105 |
+
max_value = torch.max(torch.abs(mixed))
|
| 106 |
+
if max_value > 1:
|
| 107 |
+
tgt *= 0.9 / max_value
|
| 108 |
+
mixed *= 0.9 / max_value
|
| 109 |
+
|
| 110 |
+
tgt = tgt.squeeze()
|
| 111 |
+
mixed = mixed.squeeze()
|
| 112 |
+
tgt_cap = labels2caption(self.data_meta[tgt_name])
|
| 113 |
+
neg_cap = labels2caption(self.data_meta[noise_name])
|
| 114 |
+
mixed_resample = self.resampler(mixed)
|
| 115 |
+
|
| 116 |
+
# silence query
|
| 117 |
+
if self.dset =='train' and random.random() < self.silence_rate:
|
| 118 |
+
other_name = tgt_name
|
| 119 |
+
while set(self.data_meta[other_name]) & (set(self.data_meta[tgt_name]) | set(self.data_meta[noise_name])):
|
| 120 |
+
other_name = random.choice(self.data_names)
|
| 121 |
+
tgt = torch.zeros_like(mixed)
|
| 122 |
+
neg_cap = labels2caption(self.data_meta[tgt_name] + self.data_meta[noise_name])
|
| 123 |
+
tgt_cap = labels2caption(self.data_meta[other_name])
|
| 124 |
+
pos_sample, _ = self.augmentation(self.resampler(torch.tensor(self.load_wav(other_name))))
|
| 125 |
+
neg_sample, _ = self.augmentation(mixed_resample)
|
| 126 |
+
|
| 127 |
+
return mixed, mixed_resample, tgt_cap, neg_cap, tgt, self.pad_or_trim(pos_sample), self.pad_or_trim(neg_sample)
|
| 128 |
+
|
| 129 |
+
def pad_or_trim(self, wav_in):
|
| 130 |
+
target_len = 48000 * self.chunk_dur
|
| 131 |
+
if wav_in.size(0) < target_len:
|
| 132 |
+
wav_in = torch.nn.functional.pad(wav_in, (0, target_len - wav_in.size(0)))
|
| 133 |
+
elif wav_in.size(0) > target_len:
|
| 134 |
+
wav_in = wav_in[:target_len]
|
| 135 |
+
max_value = torch.max(torch.abs(wav_in))
|
| 136 |
+
if max_value > 1:
|
| 137 |
+
wav_in *= 0.9 / max_value
|
| 138 |
+
return wav_in
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class CLAPSepDataEngineDataSet(torch.utils.data.Dataset): # type: ignore
|
| 142 |
+
|
| 143 |
+
def __init__(self, data_list, dset='', data_engine_json='', silence_rate=0.05, chunk_dur=10, sr=None, resample_rate=None):
|
| 144 |
+
assert dset in ['train', 'val'], \
|
| 145 |
+
"`dset` must be one of ['train', 'val']"
|
| 146 |
+
self.dset = dset
|
| 147 |
+
self.silence_rate = silence_rate
|
| 148 |
+
self.chunk_dur = chunk_dur
|
| 149 |
+
self.data_meta = dict()
|
| 150 |
+
with open(data_list, 'r', encoding='utf-8') as d:
|
| 151 |
+
reader = csv.reader(d, skipinitialspace=True)
|
| 152 |
+
for row in reader:
|
| 153 |
+
assert os.path.exists(row[0]), row[0]
|
| 154 |
+
self.data_meta[row[0]] = row[1:]
|
| 155 |
+
# self.data_meta.pop('file_name')
|
| 156 |
+
self.augmentation = torchaudio.transforms.SpeedPerturbation(48000, [0.9, 1.1])
|
| 157 |
+
|
| 158 |
+
self.data_names = list(self.data_meta.keys())
|
| 159 |
+
if dset == 'val':
|
| 160 |
+
self.noise_names = []
|
| 161 |
+
for name in self.data_names:
|
| 162 |
+
noise_name = name
|
| 163 |
+
while set(self.data_meta[noise_name]) & set(self.data_meta[name]):
|
| 164 |
+
noise_name = random.choice(self.data_names)
|
| 165 |
+
self.noise_names.append(noise_name)
|
| 166 |
+
|
| 167 |
+
self.data_engine_dict = {}
|
| 168 |
+
if os.path.exists(data_engine_json):
|
| 169 |
+
self.data_engine_dict = json.load(open(data_engine_json, 'r'))
|
| 170 |
+
|
| 171 |
+
if resample_rate is not None:
|
| 172 |
+
self.resampler = AT.Resample(sr, resample_rate)
|
| 173 |
+
self.sr = sr
|
| 174 |
+
self.resample_rate = resample_rate
|
| 175 |
+
else:
|
| 176 |
+
self.sr = sr
|
| 177 |
+
|
| 178 |
+
def __len__(self):
|
| 179 |
+
return len(self.data_names)
|
| 180 |
+
|
| 181 |
+
def load_wav(self, path):
|
| 182 |
+
max_length = self.sr * self.chunk_dur
|
| 183 |
+
wav = librosa.core.load(path, sr=self.sr)[0]
|
| 184 |
+
if len(wav) > max_length:
|
| 185 |
+
wav = wav[0:max_length]
|
| 186 |
+
|
| 187 |
+
# pad audio to max length, 10s for AudioCaps
|
| 188 |
+
if len(wav) < max_length:
|
| 189 |
+
wav = np.pad(wav, (0, max_length - len(wav)), 'constant')
|
| 190 |
+
return wav
|
| 191 |
+
|
| 192 |
+
def __getitem__(self, idx):
|
| 193 |
+
tgt_name = self.data_names[idx]
|
| 194 |
+
if self.dset =='train':
|
| 195 |
+
noise_name = tgt_name
|
| 196 |
+
while set(self.data_meta[noise_name]) & set(self.data_meta[tgt_name]):
|
| 197 |
+
noise_name = random.choice(self.data_names)
|
| 198 |
+
else:
|
| 199 |
+
noise_name = self.noise_names[idx]
|
| 200 |
+
|
| 201 |
+
snr = torch.zeros((1,))
|
| 202 |
+
# snr = (torch.rand((1,)) * 10 - 5) if self.dset == 'train' else torch.zeros((1,))
|
| 203 |
+
tgt = torch.tensor(self.load_wav(tgt_name)).unsqueeze(0)
|
| 204 |
+
noise = torch.tensor(self.load_wav(noise_name)).unsqueeze(0)
|
| 205 |
+
# assert not torch.isnan(tgt).any()
|
| 206 |
+
# assert not torch.isnan(noise).any()
|
| 207 |
+
mixed = torchaudio.functional.add_noise(tgt, noise, snr=snr)
|
| 208 |
+
# assert not torch.isnan(mixed).any(), f"tgt: {tgt_name}, noise: {noise_name}"
|
| 209 |
+
|
| 210 |
+
pos_sample, _ = self.augmentation(self.resampler(tgt.squeeze()))
|
| 211 |
+
noise = noise.squeeze()
|
| 212 |
+
|
| 213 |
+
max_value = torch.max(torch.abs(mixed))
|
| 214 |
+
if max_value > 1:
|
| 215 |
+
tgt *= 0.9 / max_value
|
| 216 |
+
mixed *= 0.9 / max_value
|
| 217 |
+
|
| 218 |
+
tgt = tgt.squeeze()
|
| 219 |
+
mixed = mixed.squeeze()
|
| 220 |
+
tgt_cap = labels2caption(self.data_meta[tgt_name])
|
| 221 |
+
neg_cap = labels2caption(self.data_meta[noise_name])
|
| 222 |
+
mixed_resample = self.resampler(mixed)
|
| 223 |
+
|
| 224 |
+
# A(A1, A2) + B, A1 as target, A2 + B as noise
|
| 225 |
+
# video = tgt_name.split('/')[-1][:-4]
|
| 226 |
+
# if self.dset =='train' and video in self.data_engine_dict and random.random() > 0.5:
|
| 227 |
+
# items = self.data_engine_dict[video]
|
| 228 |
+
# tgt_idx = random.choice(range(0, len(items)))
|
| 229 |
+
# tgt_item = items[tgt_idx]
|
| 230 |
+
# items.pop(tgt_idx)
|
| 231 |
+
# tgt = torch.tensor(self.load_wav(tgt_item[0]))
|
| 232 |
+
# max_value = torch.max(torch.abs(tgt))
|
| 233 |
+
# if max_value > 1:
|
| 234 |
+
# tgt *= 0.9 / max_value
|
| 235 |
+
# tgt_cap = tgt_item[1]
|
| 236 |
+
# if len(items) > 0:
|
| 237 |
+
# noises = [torch.tensor(self.load_wav(x[0])) for x in items]
|
| 238 |
+
# noises.append(noise)
|
| 239 |
+
# noise_caps = [neg_cap.replace('sound', 'sounds')] + [x[1] for x in items]
|
| 240 |
+
# noise = torch.mean(torch.stack(noises, dim=0), dim=0)
|
| 241 |
+
# neg_cap = ', '.join(noise_caps)
|
| 242 |
+
|
| 243 |
+
# A(A1, A2), A1 as target, others as noise
|
| 244 |
+
video = tgt_name.split('/')[-1][:-4]
|
| 245 |
+
if self.dset =='train' and video in self.data_engine_dict and random.random() > 0.5:
|
| 246 |
+
mixed = tgt
|
| 247 |
+
mixed_resample = self.resampler(mixed)
|
| 248 |
+
items = self.data_engine_dict[video]
|
| 249 |
+
tgt_idx = random.choice(range(0, len(items)))
|
| 250 |
+
tgt_item = items[tgt_idx]
|
| 251 |
+
items.pop(tgt_idx)
|
| 252 |
+
tgt = torch.tensor(self.load_wav(tgt_item[0]))
|
| 253 |
+
max_value = torch.max(torch.abs(tgt))
|
| 254 |
+
if max_value > 1:
|
| 255 |
+
tgt *= 0.9 / max_value
|
| 256 |
+
tgt_cap = tgt_item[1]
|
| 257 |
+
if len(items) > 0:
|
| 258 |
+
noises = [torch.tensor(self.load_wav(x[0])) for x in items]
|
| 259 |
+
noise_caps = [x[1] for x in items]
|
| 260 |
+
noise = torch.mean(torch.stack(noises, dim=0), dim=0)
|
| 261 |
+
neg_cap = labels2caption(noise_caps)
|
| 262 |
+
|
| 263 |
+
# silence query
|
| 264 |
+
elif self.dset =='train' and random.random() < self.silence_rate:
|
| 265 |
+
other_name = tgt_name
|
| 266 |
+
while set(self.data_meta[other_name]) & (set(self.data_meta[tgt_name]) | set(self.data_meta[noise_name])):
|
| 267 |
+
other_name = random.choice(self.data_names)
|
| 268 |
+
tgt = torch.zeros_like(mixed)
|
| 269 |
+
neg_cap = labels2caption(self.data_meta[tgt_name] + self.data_meta[noise_name])
|
| 270 |
+
tgt_cap = labels2caption(self.data_meta[other_name])
|
| 271 |
+
pos_sample, _ = self.augmentation(self.resampler(torch.tensor(self.load_wav(other_name))))
|
| 272 |
+
noise = mixed
|
| 273 |
+
|
| 274 |
+
neg_sample, _ = self.augmentation(self.resampler(noise))
|
| 275 |
+
|
| 276 |
+
return mixed, mixed_resample, tgt_cap, neg_cap, tgt, self.pad_or_trim(pos_sample), self.pad_or_trim(neg_sample)
|
| 277 |
+
|
| 278 |
+
def pad_or_trim(self, wav_in):
|
| 279 |
+
target_len = 48000 * self.chunk_dur
|
| 280 |
+
if wav_in.size(0) < target_len:
|
| 281 |
+
wav_in = torch.nn.functional.pad(wav_in, (0, target_len - wav_in.size(0)))
|
| 282 |
+
elif wav_in.size(0) > target_len:
|
| 283 |
+
wav_in = wav_in[:target_len]
|
| 284 |
+
max_value = torch.max(torch.abs(wav_in))
|
| 285 |
+
if max_value > 1:
|
| 286 |
+
wav_in *= 0.9 / max_value
|
| 287 |
+
return wav_in
|
| 288 |
+
|
eval.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
import torchaudio.transforms as AT
|
| 7 |
+
import csv
|
| 8 |
+
import numpy as np
|
| 9 |
+
import librosa
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import laion_clap
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
from model.CLAPSep import LightningModule
|
| 14 |
+
from model.CLAPSep_decoder import HTSAT_Decoder
|
| 15 |
+
import argparse
|
| 16 |
+
import pytorch_lightning as pl
|
| 17 |
+
from helpers import utils as local_utils
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class AudioCapsTest(torch.utils.data.Dataset): # type: ignore
|
| 21 |
+
|
| 22 |
+
def __init__(self, eval_csv, input_dir, sr=32000,
|
| 23 |
+
resample_rate=48000):
|
| 24 |
+
self.data_path = input_dir
|
| 25 |
+
|
| 26 |
+
self.data_names = []
|
| 27 |
+
self.data_caps = []
|
| 28 |
+
self.noise_names = []
|
| 29 |
+
self.noise_caps = []
|
| 30 |
+
with open(eval_csv, 'r') as d:
|
| 31 |
+
reader = csv.reader(d, skipinitialspace=True)
|
| 32 |
+
next(reader)
|
| 33 |
+
for row in reader:
|
| 34 |
+
self.data_names.append(row[0])
|
| 35 |
+
self.data_caps.append(row[1])
|
| 36 |
+
self.noise_names.append(row[2])
|
| 37 |
+
self.noise_caps.append(row[3])
|
| 38 |
+
|
| 39 |
+
if resample_rate is not None:
|
| 40 |
+
self.resampler = AT.Resample(sr, resample_rate)
|
| 41 |
+
self.sr = sr
|
| 42 |
+
self.resample_rate = resample_rate
|
| 43 |
+
else:
|
| 44 |
+
self.sr = sr
|
| 45 |
+
|
| 46 |
+
def __len__(self):
|
| 47 |
+
return len(self.data_names)
|
| 48 |
+
|
| 49 |
+
def load_wav(self, path):
|
| 50 |
+
max_length = self.sr * 10
|
| 51 |
+
wav = librosa.core.load(path, sr=self.sr)[0]
|
| 52 |
+
if len(wav) > max_length:
|
| 53 |
+
wav = wav[0:max_length]
|
| 54 |
+
|
| 55 |
+
# pad audio to max length, 10s for AudioCaps
|
| 56 |
+
if len(wav) < max_length:
|
| 57 |
+
# audio = torch.nn.functional.pad(audio, (0, self.max_length - audio.size(1)), 'constant')
|
| 58 |
+
wav = np.pad(wav, (0, max_length - len(wav)), 'constant')
|
| 59 |
+
return wav
|
| 60 |
+
|
| 61 |
+
def __getitem__(self, idx):
|
| 62 |
+
|
| 63 |
+
tgt_name = self.data_names[idx]
|
| 64 |
+
noise_name = self.noise_names[idx]
|
| 65 |
+
tgt_cap = self.data_caps[idx]
|
| 66 |
+
neg_cap = self.noise_caps[idx]
|
| 67 |
+
|
| 68 |
+
assert noise_name != tgt_name
|
| 69 |
+
snr = torch.ones((1,)) * 0
|
| 70 |
+
tgt = torch.tensor(self.load_wav(os.path.join(self.data_path, tgt_name))).unsqueeze(0)
|
| 71 |
+
noise = torch.tensor(self.load_wav(os.path.join(self.data_path, noise_name))).unsqueeze(0)
|
| 72 |
+
mixed = torchaudio.functional.add_noise(tgt, noise, snr=snr)
|
| 73 |
+
|
| 74 |
+
max_value = torch.max(torch.abs(mixed))
|
| 75 |
+
if max_value > 1:
|
| 76 |
+
tgt *= 0.9 / max_value
|
| 77 |
+
mixed *= 0.9 / max_value
|
| 78 |
+
|
| 79 |
+
tgt = tgt.squeeze()
|
| 80 |
+
mixed = mixed.squeeze()
|
| 81 |
+
|
| 82 |
+
return mixed, self.resampler(mixed), tgt_cap, neg_cap, tgt
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def main(args):
|
| 87 |
+
torch.set_float32_matmul_precision('highest')
|
| 88 |
+
# Load dataset
|
| 89 |
+
|
| 90 |
+
data_test = AudioCapsTest(eval_csv=args.eval_csv,
|
| 91 |
+
input_dir=args.input_dir,
|
| 92 |
+
sr=args.sample_rate,
|
| 93 |
+
resample_rate=48000)
|
| 94 |
+
|
| 95 |
+
test_loader = torch.utils.data.DataLoader(data_test,
|
| 96 |
+
batch_size=1,
|
| 97 |
+
num_workers=1,
|
| 98 |
+
pin_memory=True,
|
| 99 |
+
shuffle=False)
|
| 100 |
+
|
| 101 |
+
clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cpu')
|
| 102 |
+
clap_model.load_ckpt(args.clap_path)
|
| 103 |
+
decoder = HTSAT_Decoder(**args.model)
|
| 104 |
+
lightning_module = LightningModule(clap_model, decoder, lr=args.optim['lr'],
|
| 105 |
+
use_lora=args.lora,
|
| 106 |
+
rank=args.lora_rank,
|
| 107 |
+
nfft=args.nfft)
|
| 108 |
+
distributed_backend = "ddp"
|
| 109 |
+
trainer = pl.Trainer(
|
| 110 |
+
default_root_dir=os.path.join(args.exp_dir, 'checkpoint'),
|
| 111 |
+
devices=args.gpu_ids if args.use_cuda else "auto",
|
| 112 |
+
accelerator="gpu" if args.use_cuda else "cpu",
|
| 113 |
+
benchmark=False,
|
| 114 |
+
gradient_clip_val=5.0,
|
| 115 |
+
precision='bf16-mixed',
|
| 116 |
+
limit_train_batches=1.0,
|
| 117 |
+
max_epochs=args.epochs,
|
| 118 |
+
strategy=distributed_backend,
|
| 119 |
+
logger=False
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# weight = torch.load(args.ckpt_path, map_location="cpu")
|
| 123 |
+
# lightning_module.load_state_dict(weight, strict=False)
|
| 124 |
+
|
| 125 |
+
# trainer.test(model=lightning_module, dataloaders=test_loader)
|
| 126 |
+
|
| 127 |
+
trainer.test(model=lightning_module, dataloaders=test_loader, ckpt_path=args.ckpt_path)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
if __name__ == '__main__':
|
| 132 |
+
parser = argparse.ArgumentParser()
|
| 133 |
+
# Data Params
|
| 134 |
+
parser.add_argument('exp_dir', type=str,
|
| 135 |
+
default='experiments',
|
| 136 |
+
help="Path to save checkpoints and logs.")
|
| 137 |
+
|
| 138 |
+
parser.add_argument('--sample_rate', type=int, default=32000)
|
| 139 |
+
parser.add_argument('--ckpt_path', type=str, default='')
|
| 140 |
+
parser.add_argument('--eval_csv', type=str, default='')
|
| 141 |
+
parser.add_argument('--input_dir', type=str, default='')
|
| 142 |
+
|
| 143 |
+
parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
|
| 144 |
+
help="Whether to use cuda")
|
| 145 |
+
parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
|
| 146 |
+
help="List of GPU ids used for training. "
|
| 147 |
+
"Eg., --gpu_ids 2 4. All GPUs are used by default.")
|
| 148 |
+
|
| 149 |
+
args = parser.parse_args()
|
| 150 |
+
|
| 151 |
+
# Set the random seed for reproducible experiments
|
| 152 |
+
pl.seed_everything(114514)
|
| 153 |
+
# Set up checkpoints
|
| 154 |
+
if not os.path.exists(args.exp_dir):
|
| 155 |
+
os.makedirs(args.exp_dir)
|
| 156 |
+
|
| 157 |
+
# Load model and training params
|
| 158 |
+
params = local_utils.Params(os.path.join(args.exp_dir, 'config.json'))
|
| 159 |
+
for k, v in params.__dict__.items():
|
| 160 |
+
vars(args)[k] = v
|
| 161 |
+
main(args)
|
eval.sh
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
ckpt_path="experiments/ClearSep_audioset_32k/checkpoints/epoch=100-step=868000-val_loss=10.33.ckpt"
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
python eval.py \
|
| 7 |
+
./experiments/ClearSep_audioset_32k \
|
| 8 |
+
--sample_rate 32000 \
|
| 9 |
+
--ckpt_path $ckpt_path \
|
| 10 |
+
--eval_csv metadata/evaluation/audiocaps_label_eval.csv \
|
| 11 |
+
--input_dir /home/wangtianhao/data/sound/audiocaps/dataset/audios_32k/test \
|
| 12 |
+
--use_cuda \
|
| 13 |
+
--gpu_ids 0
|
| 14 |
+
|
experiments/ClearSep_audioset_32k/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e375acdc54da7338b97f80035f272c6e019377363c60df0f107f9a00dd8a5267
|
| 3 |
+
size 1104
|
helpers/__init__.py
ADDED
|
File without changes
|
helpers/utils.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A collection of useful helper functions"""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import logging
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch.profiler import profile, record_function, ProfilerActivity
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from torchmetrics.functional import(
|
| 11 |
+
scale_invariant_signal_noise_ratio as si_snr,
|
| 12 |
+
signal_noise_ratio as snr,
|
| 13 |
+
signal_distortion_ratio as sdr,
|
| 14 |
+
scale_invariant_signal_distortion_ratio as si_sdr)
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
|
| 17 |
+
class Params():
|
| 18 |
+
"""Class that loads hyperparameters from a json file.
|
| 19 |
+
Example:
|
| 20 |
+
```
|
| 21 |
+
params = Params(json_path)
|
| 22 |
+
print(params.learning_rate)
|
| 23 |
+
params.learning_rate = 0.5 # change the value of learning_rate in params
|
| 24 |
+
```
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, json_path):
|
| 28 |
+
with open(json_path) as f:
|
| 29 |
+
params = json.load(f)
|
| 30 |
+
self.__dict__.update(params)
|
| 31 |
+
|
| 32 |
+
def save(self, json_path):
|
| 33 |
+
with open(json_path, 'w') as f:
|
| 34 |
+
json.dump(self.__dict__, f, indent=4)
|
| 35 |
+
|
| 36 |
+
def update(self, json_path):
|
| 37 |
+
"""Loads parameters from json file"""
|
| 38 |
+
with open(json_path) as f:
|
| 39 |
+
params = json.load(f)
|
| 40 |
+
self.__dict__.update(params)
|
| 41 |
+
|
| 42 |
+
@property
|
| 43 |
+
def dict(self):
|
| 44 |
+
"""Gives dict-like access to Params instance by `params.dict['learning_rate']"""
|
| 45 |
+
return self.__dict__
|
| 46 |
+
|
| 47 |
+
def save_graph(train_metrics, test_metrics, save_dir):
|
| 48 |
+
metrics = [snr, si_snr]
|
| 49 |
+
results = {'train_loss': train_metrics['loss'],
|
| 50 |
+
'test_loss' : test_metrics['loss']}
|
| 51 |
+
|
| 52 |
+
for m_fn in metrics:
|
| 53 |
+
results["train_"+m_fn.__name__] = train_metrics[m_fn.__name__]
|
| 54 |
+
results["test_"+m_fn.__name__] = test_metrics[m_fn.__name__]
|
| 55 |
+
|
| 56 |
+
results_pd = pd.DataFrame(results)
|
| 57 |
+
|
| 58 |
+
results_pd.to_csv(os.path.join(save_dir, 'results.csv'))
|
| 59 |
+
|
| 60 |
+
fig, temp_ax = plt.subplots(2, 3, figsize=(15,10))
|
| 61 |
+
axs=[]
|
| 62 |
+
for i in temp_ax:
|
| 63 |
+
for j in i:
|
| 64 |
+
axs.append(j)
|
| 65 |
+
|
| 66 |
+
x = range(len(train_metrics['loss']))
|
| 67 |
+
axs[0].plot(x, train_metrics['loss'], label='train')
|
| 68 |
+
axs[0].plot(x, test_metrics['loss'], label='test')
|
| 69 |
+
axs[0].set(ylabel='Loss')
|
| 70 |
+
axs[0].set(xlabel='Epoch')
|
| 71 |
+
axs[0].set_title('loss',fontweight='bold')
|
| 72 |
+
axs[0].legend()
|
| 73 |
+
|
| 74 |
+
for i in range(len(metrics)):
|
| 75 |
+
axs[i+1].plot(x, train_metrics[metrics[i].__name__], label='train')
|
| 76 |
+
axs[i+1].plot(x, test_metrics[metrics[i].__name__], label='test')
|
| 77 |
+
axs[i+1].set(xlabel='Epoch')
|
| 78 |
+
axs[i+1].set_title(metrics[i].__name__,fontweight='bold')
|
| 79 |
+
axs[i+1].legend()
|
| 80 |
+
|
| 81 |
+
plt.tight_layout()
|
| 82 |
+
plt.savefig(os.path.join(save_dir, 'results.png'))
|
| 83 |
+
plt.close(fig)
|
| 84 |
+
|
| 85 |
+
def set_logger(log_path):
|
| 86 |
+
"""Set the logger to log info in terminal and file `log_path`.
|
| 87 |
+
In general, it is useful to have a logger so that every output to the terminal is saved
|
| 88 |
+
in a permanent file. Here we save it to `model_dir/train.log`.
|
| 89 |
+
Example:
|
| 90 |
+
```
|
| 91 |
+
logging.info("Starting training...")
|
| 92 |
+
```
|
| 93 |
+
Args:
|
| 94 |
+
log_path: (string) where to log
|
| 95 |
+
"""
|
| 96 |
+
logger = logging.getLogger()
|
| 97 |
+
logger.setLevel(logging.INFO)
|
| 98 |
+
logger.handlers.clear()
|
| 99 |
+
|
| 100 |
+
# Logging to a file
|
| 101 |
+
file_handler = logging.FileHandler(log_path)
|
| 102 |
+
file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
|
| 103 |
+
logger.addHandler(file_handler)
|
| 104 |
+
|
| 105 |
+
# Logging to console
|
| 106 |
+
stream_handler = logging.StreamHandler()
|
| 107 |
+
stream_handler.setFormatter(logging.Formatter('%(message)s'))
|
| 108 |
+
logger.addHandler(stream_handler)
|
| 109 |
+
|
| 110 |
+
def load_checkpoint(checkpoint, model, optim=None, lr_sched=None, data_parallel=False):
|
| 111 |
+
"""Loads model parameters (state_dict) from file_path.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
checkpoint: (string) filename which needs to be loaded
|
| 115 |
+
model: (torch.nn.Module) model for which the parameters are loaded
|
| 116 |
+
data_parallel: (bool) if the model is a data parallel model
|
| 117 |
+
"""
|
| 118 |
+
if not os.path.exists(checkpoint):
|
| 119 |
+
raise("File doesn't exist {}".format(checkpoint))
|
| 120 |
+
|
| 121 |
+
state_dict = torch.load(checkpoint)
|
| 122 |
+
|
| 123 |
+
if data_parallel:
|
| 124 |
+
state_dict['model_state_dict'] = {
|
| 125 |
+
'module.' + k: state_dict['model_state_dict'][k]
|
| 126 |
+
for k in state_dict['model_state_dict'].keys()}
|
| 127 |
+
model.load_state_dict(state_dict['model_state_dict'])
|
| 128 |
+
|
| 129 |
+
if optim is not None:
|
| 130 |
+
optim.load_state_dict(state_dict['optim_state_dict'])
|
| 131 |
+
|
| 132 |
+
if lr_sched is not None:
|
| 133 |
+
lr_sched.load_state_dict(state_dict['lr_sched_state_dict'])
|
| 134 |
+
|
| 135 |
+
return state_dict['epoch'], state_dict['train_metrics'], \
|
| 136 |
+
state_dict['val_metrics']
|
| 137 |
+
|
| 138 |
+
def save_checkpoint(checkpoint, epoch, model, optim=None, lr_sched=None,
|
| 139 |
+
train_metrics=None, val_metrics=None, data_parallel=False):
|
| 140 |
+
"""Saves model parameters (state_dict) to file_path.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
checkpoint: (string) filename which needs to be loaded
|
| 144 |
+
model: (torch.nn.Module) model for which the parameters are loaded
|
| 145 |
+
data_parallel: (bool) if the model is a data parallel model
|
| 146 |
+
"""
|
| 147 |
+
if os.path.exists(checkpoint):
|
| 148 |
+
raise("File already exists {}".format(checkpoint))
|
| 149 |
+
|
| 150 |
+
model_state_dict = model.state_dict()
|
| 151 |
+
if data_parallel:
|
| 152 |
+
model_state_dict = {
|
| 153 |
+
k.partition('module.')[2]:
|
| 154 |
+
model_state_dict[k] for k in model_state_dict.keys()}
|
| 155 |
+
|
| 156 |
+
optim_state_dict = None if not optim else optim.state_dict()
|
| 157 |
+
lr_sched_state_dict = None if not lr_sched else lr_sched.state_dict()
|
| 158 |
+
|
| 159 |
+
state_dict = {
|
| 160 |
+
'epoch': epoch,
|
| 161 |
+
'model_state_dict': model_state_dict,
|
| 162 |
+
'optim_state_dict': optim_state_dict,
|
| 163 |
+
'lr_sched_state_dict': lr_sched_state_dict,
|
| 164 |
+
'train_metrics': train_metrics,
|
| 165 |
+
'val_metrics': val_metrics
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
torch.save(state_dict, checkpoint)
|
| 169 |
+
|
| 170 |
+
def model_size(model):
|
| 171 |
+
"""
|
| 172 |
+
Returns size of the `model` in millions of parameters.
|
| 173 |
+
"""
|
| 174 |
+
num_train_params = sum(
|
| 175 |
+
p.numel() for p in model.parameters() if p.requires_grad)
|
| 176 |
+
return num_train_params / 1e6
|
| 177 |
+
|
| 178 |
+
def run_time(model, inputs, profiling=False):
|
| 179 |
+
"""
|
| 180 |
+
Returns runtime of a model in ms.
|
| 181 |
+
"""
|
| 182 |
+
# Warmup
|
| 183 |
+
for _ in range(100):
|
| 184 |
+
output = model(*inputs)
|
| 185 |
+
|
| 186 |
+
with profile(activities=[ProfilerActivity.CPU],
|
| 187 |
+
record_shapes=True) as prof:
|
| 188 |
+
with record_function("model_inference"):
|
| 189 |
+
output = model(*inputs)
|
| 190 |
+
|
| 191 |
+
# Print profiling results
|
| 192 |
+
if profiling:
|
| 193 |
+
print(prof.key_averages().table(sort_by="self_cpu_time_total",
|
| 194 |
+
row_limit=20))
|
| 195 |
+
|
| 196 |
+
# Return runtime in ms
|
| 197 |
+
return prof.profiler.self_cpu_time_total / 1000
|
| 198 |
+
|
| 199 |
+
def format_lr_info(optimizer):
|
| 200 |
+
lr_info = ""
|
| 201 |
+
for i, pg in enumerate(optimizer.param_groups):
|
| 202 |
+
lr_info += " {group %d: params=%.5fM lr=%.1E}" % (
|
| 203 |
+
i, sum([p.numel() for p in pg['params']]) / (1024 ** 2), pg['lr'])
|
| 204 |
+
return lr_info
|
| 205 |
+
|
infer_data_engine.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
ckpt_path="experiments/ClearSep_audioset_32k/checkpoints/epoch=100-step=868000-val_loss=10.33.ckpt"
|
| 4 |
+
|
| 5 |
+
# output audio save path: ClearSep/model/CLAPSep_infer.py:153~154
|
| 6 |
+
|
| 7 |
+
python infer_data_engine_json.py \
|
| 8 |
+
./experiments/ClearSep_audioset_32k \
|
| 9 |
+
--sample_rate 32000 \
|
| 10 |
+
--ckpt_path $ckpt_path \
|
| 11 |
+
--audioset_json metadata/data_engine_meta/child_label/bal_train_segments_multi_label.json \
|
| 12 |
+
--video2path_map_csv metadata/audioset/train_lst.csv \
|
| 13 |
+
--use_cuda \
|
| 14 |
+
--gpu_ids 0
|
| 15 |
+
|
infer_data_engine_json.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torchaudio
|
| 7 |
+
import torchaudio.transforms as AT
|
| 8 |
+
import csv
|
| 9 |
+
import numpy as np
|
| 10 |
+
import librosa
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import laion_clap
|
| 13 |
+
from model.CLAPSep_infer import LightningModule
|
| 14 |
+
from model.CLAPSep_decoder import HTSAT_Decoder
|
| 15 |
+
import argparse
|
| 16 |
+
import pytorch_lightning as pl
|
| 17 |
+
from helpers import utils as local_utils
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class AudioCapsTest(torch.utils.data.Dataset): # type: ignore
|
| 21 |
+
|
| 22 |
+
def __init__(self, audioset_json, video2path_map_csv, sr=32000, resample_rate=48000):
|
| 23 |
+
self.data_names = []
|
| 24 |
+
self.data_labels = []
|
| 25 |
+
video2path = {}
|
| 26 |
+
for item in csv.reader(open(video2path_map_csv, 'r')):
|
| 27 |
+
video2path[item[0]] = item[-1]
|
| 28 |
+
|
| 29 |
+
video2labels = json.load(open(audioset_json, 'r'))
|
| 30 |
+
for video, labels in video2labels.items():
|
| 31 |
+
if video in video2path:
|
| 32 |
+
video_path = video2path[video]
|
| 33 |
+
self.data_names.append(video_path)
|
| 34 |
+
self.data_labels.append(labels)
|
| 35 |
+
|
| 36 |
+
if resample_rate is not None:
|
| 37 |
+
self.resampler = AT.Resample(sr, resample_rate)
|
| 38 |
+
self.sr = sr
|
| 39 |
+
self.resample_rate = resample_rate
|
| 40 |
+
else:
|
| 41 |
+
self.sr = sr
|
| 42 |
+
|
| 43 |
+
def __len__(self):
|
| 44 |
+
return len(self.data_names)
|
| 45 |
+
|
| 46 |
+
def load_wav(self, path):
|
| 47 |
+
max_length = self.sr * 10
|
| 48 |
+
wav = librosa.core.load(path, sr=self.sr)[0]
|
| 49 |
+
if len(wav) > max_length:
|
| 50 |
+
wav = wav[0:max_length]
|
| 51 |
+
|
| 52 |
+
# pad audio to max length, 10s for AudioCaps
|
| 53 |
+
if len(wav) < max_length:
|
| 54 |
+
# audio = torch.nn.functional.pad(audio, (0, self.max_length - audio.size(1)), 'constant')
|
| 55 |
+
wav = np.pad(wav, (0, max_length - len(wav)), 'constant')
|
| 56 |
+
return wav
|
| 57 |
+
|
| 58 |
+
def __getitem__(self, idx):
|
| 59 |
+
tgt_name = self.data_names[idx]
|
| 60 |
+
tgt_labels = self.data_labels[idx]
|
| 61 |
+
|
| 62 |
+
mixed = torch.tensor(self.load_wav(tgt_name))
|
| 63 |
+
|
| 64 |
+
return mixed, self.resampler(mixed), '|'.join(tgt_labels), tgt_name
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def main(args):
|
| 69 |
+
torch.set_float32_matmul_precision('highest')
|
| 70 |
+
# Load dataset
|
| 71 |
+
|
| 72 |
+
data_test = AudioCapsTest(audioset_json=args.audioset_json,
|
| 73 |
+
video2path_map_csv=args.video2path_map_csv,
|
| 74 |
+
sr=args.sample_rate,
|
| 75 |
+
resample_rate=48000)
|
| 76 |
+
|
| 77 |
+
test_loader = torch.utils.data.DataLoader(data_test,
|
| 78 |
+
batch_size=1,
|
| 79 |
+
num_workers=1,
|
| 80 |
+
pin_memory=True,
|
| 81 |
+
shuffle=False)
|
| 82 |
+
|
| 83 |
+
clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cpu')
|
| 84 |
+
clap_model.load_ckpt(args.clap_path)
|
| 85 |
+
decoder = HTSAT_Decoder(**args.model)
|
| 86 |
+
lightning_module = LightningModule(clap_model, decoder, lr=args.optim['lr'],
|
| 87 |
+
use_lora=args.lora,
|
| 88 |
+
rank=args.lora_rank,
|
| 89 |
+
nfft=args.nfft)
|
| 90 |
+
distributed_backend = "ddp"
|
| 91 |
+
trainer = pl.Trainer(
|
| 92 |
+
default_root_dir=os.path.join(args.exp_dir, 'checkpoint'),
|
| 93 |
+
devices=args.gpu_ids if args.use_cuda else "auto",
|
| 94 |
+
accelerator="gpu" if args.use_cuda else "cpu",
|
| 95 |
+
benchmark=False,
|
| 96 |
+
gradient_clip_val=5.0,
|
| 97 |
+
precision='bf16-mixed',
|
| 98 |
+
limit_train_batches=1.0,
|
| 99 |
+
max_epochs=args.epochs,
|
| 100 |
+
strategy=distributed_backend,
|
| 101 |
+
logger=False
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
weights = torch.load(args.ckpt_path, map_location='cpu')
|
| 105 |
+
lightning_module.load_state_dict(weights, strict=False)
|
| 106 |
+
|
| 107 |
+
trainer.test(model=lightning_module, dataloaders=test_loader)
|
| 108 |
+
|
| 109 |
+
# trainer.test(model=lightning_module, dataloaders=test_loader, ckpt_path=args.ckpt_path)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
if __name__ == '__main__':
|
| 114 |
+
parser = argparse.ArgumentParser()
|
| 115 |
+
# Data Params
|
| 116 |
+
parser.add_argument('exp_dir', type=str,
|
| 117 |
+
default='experiments',
|
| 118 |
+
help="Path to save checkpoints and logs.")
|
| 119 |
+
|
| 120 |
+
parser.add_argument('--sample_rate', type=int, default=16000)
|
| 121 |
+
parser.add_argument('--ckpt_path', type=str, default='')
|
| 122 |
+
parser.add_argument('--audioset_json', type=str, default='')
|
| 123 |
+
parser.add_argument('--video2path_map_csv', type=str, default='')
|
| 124 |
+
|
| 125 |
+
parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
|
| 126 |
+
help="Whether to use cuda")
|
| 127 |
+
parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
|
| 128 |
+
help="List of GPU ids used for training. "
|
| 129 |
+
"Eg., --gpu_ids 2 4. All GPUs are used by default.")
|
| 130 |
+
|
| 131 |
+
args = parser.parse_args()
|
| 132 |
+
|
| 133 |
+
# Set the random seed for reproducible experiments
|
| 134 |
+
pl.seed_everything(114514)
|
| 135 |
+
# Set up checkpoints
|
| 136 |
+
if not os.path.exists(args.exp_dir):
|
| 137 |
+
os.makedirs(args.exp_dir)
|
| 138 |
+
|
| 139 |
+
# Load model and training params
|
| 140 |
+
params = local_utils.Params(os.path.join(args.exp_dir, 'config.json'))
|
| 141 |
+
for k, v in params.__dict__.items():
|
| 142 |
+
vars(args)[k] = v
|
| 143 |
+
main(args)
|
metadata/audioset/audioset_label.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e340235d4af6b34442d948bc41e2b2fadf90d7e4109702fb8520c4cc6c4b8f62
|
| 3 |
+
size 69661293
|
metadata/audioset/class_labels_indices.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cdd1049833c4b86127c2773ac0d14a2754b6a6d0d1798002ed5c66e699708429
|
| 3 |
+
size 14675
|
metadata/audioset/eval_lst.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8efd7d12ad5d6658b0027ec11fe084aa6e5790d0b8a41da0292ab0dce348daf7
|
| 3 |
+
size 2019754
|
metadata/audioset/ontology.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c685f4403eecc3ca9be37fd7285cf212feaaea6ff7229d3e7ca89e0d1f2d15d
|
| 3 |
+
size 342780
|
metadata/audioset/train_lst.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:230032344363fe8f23ac9e3d96ed54efd4a8f2477cd658efa4cbf78d13e5253f
|
| 3 |
+
size 225874340
|
metadata/data_engine_json/audioset_iter2_train_data_engine_th10.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8cd5db4da07f7755e4c318aba538e87040c701e463883ce9e860652684c48da1
|
| 3 |
+
size 329874536
|
metadata/data_engine_json/audioset_iter2_train_data_engine_th15.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bab017fe44d4964848a6a1ca67a1dc5fe0966b7ef4fa72c01336238a7c4dbb42
|
| 3 |
+
size 242464513
|
metadata/data_engine_meta/child_label/bal_train_segments.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bf9959d7830a2e3122e6aec07e6d65c3282c9067b95700ebc79285324dbfb68
|
| 3 |
+
size 1501593
|
metadata/data_engine_meta/child_label/bal_train_segments_multi_label.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e7cf8eb7237a8f156f963e0d39376d8e5f87b4b0fe386de64c1d527b9b0c20a
|
| 3 |
+
size 1063491
|
metadata/data_engine_meta/child_label/eval_segments.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:503a99a3902e94f2569fecb801ca14da4526d525dbdee4cef08a4ec3ded77d26
|
| 3 |
+
size 1449092
|
metadata/data_engine_meta/child_label/unbal_train_segments.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76ea2171235b11ce8803390b0b430a28f8c5ddaf70c9ee1bb3d3ceb0d6ced27a
|
| 3 |
+
size 119776930
|
metadata/data_engine_meta/child_label/unbal_train_segments_multi_label.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf64f07ed2e96e67db83314bb4c29e98c117f12c95b3c7de431243f3d99aaec6
|
| 3 |
+
size 66899715
|
metadata/evaluation/audiocaps_caption_eval.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b96a57ab8800d88cab2ecff108ca8e1cc5309b5505a83b04eb8fd956fcd4ef65
|
| 3 |
+
size 741741
|
metadata/evaluation/audiocaps_label_eval.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8c2534f2f4c51d293d16a7116e5f8036601ec43adba2e7fd6682d8c5956c19b
|
| 3 |
+
size 497487
|
metadata/evaluation/audiocaps_label_eval_sep_silence_test.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1463d450becd35d9dd1dd2769030da69de3e0c56cd4f78c67886228d04593c6b
|
| 3 |
+
size 592858
|
metadata/evaluation/audioset_eval.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74e77cc633789d8d798efffd8183d557b948f31426cb1a450f49aa6b43ec9378
|
| 3 |
+
size 2411901
|
metadata/evaluation/audioset_single_eval.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8faf73e0b84db5d49383f67dfacdd8aba491bb6faa580e4070a44c69c411646
|
| 3 |
+
size 794337
|
metadata/evaluation/esc_eval.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1241a955f700332888bf40e80bc51cdaa6c9376edca09e5bdd05d5a7c25e32f0
|
| 3 |
+
size 608128
|
metadata/evaluation/esc_eval_samples.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0fe79e1aa7b60266379fd02556be36aa5e8aecaa9f6e6000e53e6c8d41f12c00
|
| 3 |
+
size 11564
|
metadata/training/audiocaps_caption_32k_train.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fd4db95b685e9b747b842290e35c83301ed47db9be146a05d15a21de4d84709
|
| 3 |
+
size 5660553
|
metadata/training/audiocaps_caption_32k_val.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2c1535eb967d344299013dc8d9e31cb657faf419f6924adf000ca6ebc3c32ac
|
| 3 |
+
size 145573
|
metadata/training/audiocaps_label_32k_train_sep.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc819bf9bf9e100c5f2553e5e8c49e4b9ef2e973c4b54bc4815a1f8fdbf7b9eb
|
| 3 |
+
size 4869583
|
metadata/training/audiocaps_label_32k_val_sep.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:113de99477ccd9e2217e490ef2861f1f9197e6edcfc94ca451beabb36c824a16
|
| 3 |
+
size 47563
|
metadata/training/audioset_32k_train_sep.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c713ab96a393ee913146ffe8cf2e4be77502868718ee2ac0d7feb23f0a636df6
|
| 3 |
+
size 220302378
|
metadata/training/audioset_32k_train_sep_th10_iter2.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ede407a78b9d5e98157ca9a57e84aed887543affefa86c55642636b7f77ada52
|
| 3 |
+
size 451618397
|
metadata/training/audioset_32k_train_sep_th15_iter2.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90df3df917d46b67c990fa506f26f97f8081b0e3879d460225f6438c2e65dada
|
| 3 |
+
size 389681938
|
metadata/training/audioset_32k_val_sep.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66086b740b273f47b9248de8f94d9dd3fe94c6f790b9962f8c8e0ddd9ed5459f
|
| 3 |
+
size 1473876
|
model/CLAPSep.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :CLAPSep.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2024/2/28 下午1:12
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import laion_clap
|
| 13 |
+
from torchmetrics.audio.snr import(
|
| 14 |
+
scale_invariant_signal_noise_ratio as si_snr,
|
| 15 |
+
signal_noise_ratio as snr)
|
| 16 |
+
from torchmetrics.audio.sdr import(
|
| 17 |
+
signal_distortion_ratio as sdr,
|
| 18 |
+
scale_invariant_signal_distortion_ratio as si_sdr)
|
| 19 |
+
import copy
|
| 20 |
+
import loralib as lora
|
| 21 |
+
from torchlibrosa import ISTFT, STFT, SpecAugmentation
|
| 22 |
+
from torchlibrosa.stft import magphase
|
| 23 |
+
import librosa
|
| 24 |
+
import pytorch_lightning as pl
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def loss_fn(pred, tgt):
|
| 28 |
+
return -0.9 * snr(pred, tgt).mean() - 0.1 * si_snr(pred, tgt).mean()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def set_module(model, submodule_key, module):
|
| 32 |
+
tokens = submodule_key.split('.')
|
| 33 |
+
sub_tokens = tokens[:-1]
|
| 34 |
+
cur_mod = model
|
| 35 |
+
for s in sub_tokens:
|
| 36 |
+
cur_mod = getattr(cur_mod, s)
|
| 37 |
+
setattr(cur_mod, tokens[-1], module)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def process_model(model, rank):
|
| 41 |
+
for n, module in model.named_modules():
|
| 42 |
+
if 'WindowAttention' in str(type(module)):
|
| 43 |
+
for n_, layer in module.named_modules():
|
| 44 |
+
if isinstance(layer, torch.nn.Linear):
|
| 45 |
+
lora_layer = lora.Linear(layer.in_features, layer.out_features, r=rank,
|
| 46 |
+
bias=hasattr(layer, 'bias'), merge_weights=False)
|
| 47 |
+
lora_layer.weight = layer.weight
|
| 48 |
+
if hasattr(layer, 'bias'):
|
| 49 |
+
lora_layer.bias = layer.bias
|
| 50 |
+
set_module(model, n+'.'+n_, lora_layer)
|
| 51 |
+
return model
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class LightningModule(pl.LightningModule):
|
| 55 |
+
def __init__(self, clap_model, decoder_model, lr, use_lora=False, rank=8, nfft=1024):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.phase = decoder_model.phase
|
| 58 |
+
self.lr = lr
|
| 59 |
+
self.clap_model = clap_model
|
| 60 |
+
for p in self.clap_model.parameters():
|
| 61 |
+
p.requires_grad = False
|
| 62 |
+
self.audio_branch = copy.deepcopy(self.clap_model.model.audio_branch)
|
| 63 |
+
if use_lora:
|
| 64 |
+
process_model(self.audio_branch, rank)
|
| 65 |
+
lora.mark_only_lora_as_trainable(self.audio_branch, bias='lora_only')
|
| 66 |
+
|
| 67 |
+
self.decoder_model = decoder_model
|
| 68 |
+
self.stft = STFT(n_fft=nfft, hop_length=320,
|
| 69 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 70 |
+
freeze_parameters=True)
|
| 71 |
+
self.istft = ISTFT(n_fft=nfft, hop_length=320,
|
| 72 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 73 |
+
freeze_parameters=True)
|
| 74 |
+
self.features = self.install_forward_hooks()
|
| 75 |
+
|
| 76 |
+
def training_step(self, batch, batch_idx):
|
| 77 |
+
self.clap_model.eval()
|
| 78 |
+
self.audio_branch.eval()
|
| 79 |
+
# print([len(x) for x in batch])
|
| 80 |
+
mixed, mixed_resample, pos_cap, neg_cap, gt, pos_sample, neg_sample = batch
|
| 81 |
+
real, imag = self.stft(mixed)
|
| 82 |
+
mag, cos, sin = magphase(real, imag)
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
a = torch.rand((1,)).type_as(gt)
|
| 85 |
+
embed_pos_a, embed_neg_a = torch.chunk(
|
| 86 |
+
self.clap_model.get_audio_embedding_from_data(torch.concat([pos_sample, neg_sample], dim=0),
|
| 87 |
+
use_tensor=True), dim=0, chunks=2)
|
| 88 |
+
embed_pos_t, embed_neg_t = torch.chunk(
|
| 89 |
+
self.clap_model.get_text_embedding(pos_cap + neg_cap, use_tensor=True), dim=0, chunks=2)
|
| 90 |
+
embed_pos = a * embed_pos_a + (1 - a) * embed_pos_t
|
| 91 |
+
embed_neg = a * embed_neg_a + (1 - a) * embed_neg_t
|
| 92 |
+
del self.features[:]
|
| 93 |
+
self.features.append(mag)
|
| 94 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 95 |
+
a = torch.rand((1,))
|
| 96 |
+
if a < 0.25:
|
| 97 |
+
loss = self.cal_loss(embed_pos, torch.zeros_like(embed_pos), mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 98 |
+
elif a < 0.5:
|
| 99 |
+
loss = self.cal_loss(torch.zeros_like(embed_neg), embed_neg, mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 100 |
+
else:
|
| 101 |
+
loss = self.cal_loss(embed_pos, embed_neg, mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 102 |
+
self.log("train_loss", loss.item(), on_epoch=True, prog_bar=True, sync_dist=True, batch_size=len(mixed))
|
| 103 |
+
del self.features[:]
|
| 104 |
+
return loss
|
| 105 |
+
|
| 106 |
+
def cal_loss(self, embed_p, embed_n, mag, cos, sin, length, gt):
|
| 107 |
+
embed = torch.nn.functional.normalize(torch.concat([embed_p, embed_n], dim=-1), dim=-1)
|
| 108 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 109 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=length)
|
| 110 |
+
return loss_fn(pred, gt)
|
| 111 |
+
|
| 112 |
+
def wav_reconstruct(self, mask, mag_x, cos_x, sin_x, length):
|
| 113 |
+
# ref: https://github.com/Audio-AGI/AudioSep/blob/main/models/resunet.py
|
| 114 |
+
# Y = |Y|cos∠Y + j|Y|sin∠Y
|
| 115 |
+
# = |Y|cos(∠X + ∠M) + j|Y|sin(∠X + ∠M)
|
| 116 |
+
# = |Y|(cos∠X cos∠M - sin∠X sin∠M) + j|Y|(sin∠X cos∠M + cos∠X sin∠M)
|
| 117 |
+
if self.phase:
|
| 118 |
+
mag_y = torch.nn.functional.relu_(mag_x * mask[0])
|
| 119 |
+
_, mask_cos, mask_sin = magphase(mask[1], mask[2])
|
| 120 |
+
cos_y = cos_x * mask_cos - sin_x * mask_sin
|
| 121 |
+
sin_y = sin_x * mask_cos + cos_x * mask_sin
|
| 122 |
+
else:
|
| 123 |
+
mag_y = torch.nn.functional.relu_(mag_x * mask)
|
| 124 |
+
cos_y = cos_x
|
| 125 |
+
sin_y = sin_x
|
| 126 |
+
pred = self.istft(mag_y * cos_y, mag_y * sin_y, length=length)
|
| 127 |
+
return pred
|
| 128 |
+
|
| 129 |
+
def validation_step(self, batch, batch_idx):
|
| 130 |
+
mixed, mixed_resample, label, neg_label, gt, _, _ = batch
|
| 131 |
+
real, imag = self.stft(mixed)
|
| 132 |
+
mag, cos, sin = magphase(real, imag)
|
| 133 |
+
self.features.append(mag)
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
embed_pos = self.clap_model.get_text_embedding(label, use_tensor=True)
|
| 136 |
+
embed_neg = self.clap_model.get_text_embedding(neg_label, use_tensor=True)
|
| 137 |
+
embed = torch.concat([embed_pos, embed_neg], dim=-1)
|
| 138 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 139 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 140 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=mixed.size(-1))
|
| 141 |
+
loss = si_snr(pred, gt).mean() - si_snr(mixed, gt).mean()
|
| 142 |
+
del self.features[:]
|
| 143 |
+
self.log("val_loss", loss, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=len(mixed))
|
| 144 |
+
return {"val_loss": loss}
|
| 145 |
+
|
| 146 |
+
def on_test_start(self) -> None:
|
| 147 |
+
self.sdr_vals = torch.tensor([])
|
| 148 |
+
self.sdri_vals = torch.tensor([])
|
| 149 |
+
self.sisdr_vals = torch.tensor([])
|
| 150 |
+
self.sisdri_vals = torch.tensor([])
|
| 151 |
+
|
| 152 |
+
def test_step(self, batch, batch_idx):
|
| 153 |
+
mixed, mixed_resample, label, neg_label, gt = batch
|
| 154 |
+
real, imag = self.stft(mixed)
|
| 155 |
+
mag, cos, sin = magphase(real, imag)
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
embed_pos_bached, embed_neg_bached = torch.chunk(self.clap_model.get_text_embedding(label + neg_label, use_tensor=True), chunks=2, dim=0)
|
| 158 |
+
del self.features[:]
|
| 159 |
+
# only positive
|
| 160 |
+
# embed = torch.concat([embed_pos_bached, torch.zeros_like(embed_neg_bached)], dim=1)
|
| 161 |
+
# only negative
|
| 162 |
+
# embed = torch.concat([torch.zeros_like(embed_pos_bached), embed_neg_bached], dim=1)
|
| 163 |
+
# positive and negative
|
| 164 |
+
embed = torch.concat([embed_pos_bached, embed_neg_bached], dim=1)
|
| 165 |
+
self.features.append(mag)
|
| 166 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 167 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 168 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=mixed.size(-1))
|
| 169 |
+
sisdr = si_sdr(pred, gt).cpu()
|
| 170 |
+
self.sisdr_vals = torch.concat([self.sisdr_vals, sisdr])
|
| 171 |
+
self.sisdri_vals = torch.concat([self.sisdri_vals, sisdr - si_sdr(mixed, gt).cpu()])
|
| 172 |
+
sdr_ = sdr(pred, gt).cpu()
|
| 173 |
+
self.sdr_vals = torch.concat([self.sdr_vals, sdr_])
|
| 174 |
+
self.sdri_vals = torch.concat([self.sdri_vals, sdr_ - sdr(mixed, gt).cpu()])
|
| 175 |
+
del self.features[:]
|
| 176 |
+
|
| 177 |
+
def on_test_end(self) -> None:
|
| 178 |
+
print(f"SDR-mean: {torch.mean(self.sdr_vals).cpu().numpy():.4f}, SDR-std: {torch.std(self.sdr_vals).cpu().numpy():.4f}")
|
| 179 |
+
print(f"SDRi-mean: {torch.mean(self.sdri_vals).cpu().numpy():.4f}, SDRi-std: {torch.std(self.sdri_vals).cpu().numpy():.4f}")
|
| 180 |
+
print(f"SISDR-mean: {torch.mean(self.sisdr_vals).cpu().numpy():.4f}, SISDR-std: {torch.std(self.sisdr_vals).cpu().numpy():.4f}")
|
| 181 |
+
print(f"SISDRi-mean: {torch.mean(self.sisdri_vals).cpu().numpy():.4f}, SISDRi-std: {torch.std(self.sisdri_vals).cpu().numpy():.4f}")
|
| 182 |
+
|
| 183 |
+
def configure_optimizers(self):
|
| 184 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
|
| 185 |
+
schedular = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.3, patience=5,
|
| 186 |
+
verbose=True, min_lr=5e-6)
|
| 187 |
+
return {
|
| 188 |
+
"optimizer": optimizer,
|
| 189 |
+
"lr_scheduler": {
|
| 190 |
+
"scheduler": schedular,
|
| 191 |
+
"interval": "epoch",
|
| 192 |
+
"monitor": "val_loss"
|
| 193 |
+
},
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
def install_forward_hooks(self):
|
| 197 |
+
features = []
|
| 198 |
+
spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
| 199 |
+
freq_drop_width=8, freq_stripes_num=2)
|
| 200 |
+
|
| 201 |
+
def get_features_list(_, __, output):
|
| 202 |
+
features.append(output)
|
| 203 |
+
|
| 204 |
+
def get_features_list_basic_layer(_, __, output):
|
| 205 |
+
features.append(output[0])
|
| 206 |
+
|
| 207 |
+
def spec_augmentation_hook(_, __, out):
|
| 208 |
+
out = out.transpose(1, 3)
|
| 209 |
+
out = spec_augmenter(out)
|
| 210 |
+
return out.transpose(1, 3)
|
| 211 |
+
|
| 212 |
+
def spectrogram_padding(_, __, out):
|
| 213 |
+
return torch.nn.functional.pad(out, (0, 0, 0, 1024 - out.size(2)))
|
| 214 |
+
|
| 215 |
+
self.clap_model.model.audio_branch.bn0.register_forward_hook(spec_augmentation_hook)
|
| 216 |
+
self.audio_branch.spectrogram_extractor.register_forward_hook(spectrogram_padding)
|
| 217 |
+
self.audio_branch.patch_embed.register_forward_hook(get_features_list)
|
| 218 |
+
for module in self.audio_branch.layers:
|
| 219 |
+
module.register_forward_hook(get_features_list_basic_layer)
|
| 220 |
+
return features
|
| 221 |
+
|
| 222 |
+
# # this will only save tuned parameters during training
|
| 223 |
+
# def on_save_checkpoint(self, checkpoint):
|
| 224 |
+
# weights = checkpoint['state_dict']
|
| 225 |
+
# new_dict = {}
|
| 226 |
+
# for k, v in weights.items():
|
| 227 |
+
# if any(e in k for e in ['lora', 'attn.qkv.bias', 'attn.proj.bias', 'decoder_model']):
|
| 228 |
+
# new_dict[k] = v
|
| 229 |
+
# checkpoint['state_dict'] = new_dict
|
model/CLAPSep_decoder.py
ADDED
|
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :CLAPsep_decoder.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2023/10/31 下午8:34
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
from laion_clap.clap_module.htsat import *
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
class Transpose(nn.Module):
|
| 16 |
+
|
| 17 |
+
def __init__(self, dim0, dim1):
|
| 18 |
+
super(Transpose, self).__init__()
|
| 19 |
+
self.dim0 = dim0
|
| 20 |
+
self.dim1 = dim1
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
return x.transpose(self.dim0, self.dim1)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Swish(nn.Module):
|
| 27 |
+
|
| 28 |
+
def __init__(self):
|
| 29 |
+
super(Swish, self).__init__()
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
return x * x.sigmoid()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Glu(nn.Module):
|
| 36 |
+
|
| 37 |
+
def __init__(self, dim):
|
| 38 |
+
super(Glu, self).__init__()
|
| 39 |
+
self.dim = dim
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
x_in, x_gate = x.chunk(2, dim=self.dim)
|
| 43 |
+
return x_in * x_gate.sigmoid()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class FiLM(nn.Module):
|
| 47 |
+
def __init__(self, dim_in=1024, hidden_dim=768):
|
| 48 |
+
super(FiLM, self).__init__()
|
| 49 |
+
self.beta = nn.Linear(dim_in, hidden_dim)
|
| 50 |
+
self.gamma = nn.Linear(dim_in, hidden_dim)
|
| 51 |
+
|
| 52 |
+
def forward(self, hidden_state, embed):
|
| 53 |
+
embed = embed.unsqueeze(1)
|
| 54 |
+
return self.gamma(embed) * hidden_state + self.beta(embed)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class SkipTrans(nn.Module):
|
| 58 |
+
def __init__(self, in_features, out_features, embed_dim=512, film=True):
|
| 59 |
+
super(SkipTrans, self).__init__()
|
| 60 |
+
self.film = film
|
| 61 |
+
if film:
|
| 62 |
+
self.skip_conv = FiLM(embed_dim, out_features)
|
| 63 |
+
self.feature_proj = nn.Linear(in_features, out_features)
|
| 64 |
+
self.norm = nn.LayerNorm(out_features)
|
| 65 |
+
|
| 66 |
+
def forward(self, skip, embed, x=None):
|
| 67 |
+
out = self.feature_proj(skip)
|
| 68 |
+
if self.film:
|
| 69 |
+
out = self.skip_conv(out, embed)
|
| 70 |
+
return self.norm(out) if x is None else self.norm(out + x)
|
| 71 |
+
|
| 72 |
+
class Conv1d(nn.Conv1d):
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
in_channels,
|
| 77 |
+
out_channels,
|
| 78 |
+
kernel_size,
|
| 79 |
+
stride = 1,
|
| 80 |
+
padding = "same",
|
| 81 |
+
dilation = 1,
|
| 82 |
+
groups = 1,
|
| 83 |
+
bias = True
|
| 84 |
+
):
|
| 85 |
+
super(Conv1d, self).__init__(
|
| 86 |
+
in_channels=in_channels,
|
| 87 |
+
out_channels=out_channels,
|
| 88 |
+
kernel_size=kernel_size,
|
| 89 |
+
stride=stride,
|
| 90 |
+
padding=0,
|
| 91 |
+
dilation=dilation,
|
| 92 |
+
groups=groups,
|
| 93 |
+
bias=bias,
|
| 94 |
+
padding_mode="zeros")
|
| 95 |
+
|
| 96 |
+
# Assert
|
| 97 |
+
assert padding in ["valid", "same", "causal"]
|
| 98 |
+
|
| 99 |
+
# Padding
|
| 100 |
+
if padding == "valid":
|
| 101 |
+
self.pre_padding = None
|
| 102 |
+
elif padding == "same":
|
| 103 |
+
self.pre_padding = nn.ConstantPad1d(padding=((kernel_size - 1) // 2, (kernel_size - 1) // 2), value=0)
|
| 104 |
+
elif padding == "causal":
|
| 105 |
+
self.pre_padding = nn.ConstantPad1d(padding=(kernel_size - 1, 0), value=0)
|
| 106 |
+
|
| 107 |
+
# Variational Noise
|
| 108 |
+
self.noise = None
|
| 109 |
+
self.vn_std = None
|
| 110 |
+
|
| 111 |
+
def init_vn(self, vn_std):
|
| 112 |
+
|
| 113 |
+
# Variational Noise
|
| 114 |
+
self.vn_std = vn_std
|
| 115 |
+
|
| 116 |
+
def sample_synaptic_noise(self, distributed):
|
| 117 |
+
|
| 118 |
+
# Sample Noise
|
| 119 |
+
self.noise = torch.normal(mean=0.0, std=1.0, size=self.weight.size(), device=self.weight.device, dtype=self.weight.dtype)
|
| 120 |
+
|
| 121 |
+
# Broadcast Noise
|
| 122 |
+
if distributed:
|
| 123 |
+
torch.distributed.broadcast(self.noise, 0)
|
| 124 |
+
|
| 125 |
+
def forward(self, input):
|
| 126 |
+
|
| 127 |
+
# Weight
|
| 128 |
+
weight = self.weight
|
| 129 |
+
|
| 130 |
+
# Add Noise
|
| 131 |
+
if self.noise is not None and self.training:
|
| 132 |
+
weight = weight + self.vn_std * self.noise
|
| 133 |
+
|
| 134 |
+
# Padding
|
| 135 |
+
if self.pre_padding is not None:
|
| 136 |
+
input = self.pre_padding(input)
|
| 137 |
+
|
| 138 |
+
# Apply Weight
|
| 139 |
+
return F.conv1d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class ConvolutionModule(nn.Module):
|
| 143 |
+
"""Conformer Convolution Module
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
dim_model: input feature dimension
|
| 147 |
+
dim_expand: output feature dimension
|
| 148 |
+
kernel_size: 1D depthwise convolution kernel size
|
| 149 |
+
Pdrop: residual dropout probability
|
| 150 |
+
stride: 1D depthwise convolution stride
|
| 151 |
+
padding: "valid", "same" or "causal"
|
| 152 |
+
|
| 153 |
+
Input: (batch size, input length, dim_model)
|
| 154 |
+
Output: (batch size, output length, dim_expand)
|
| 155 |
+
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
def __init__(self, dim_model, dim_expand, kernel_size, Pdrop, stride, padding):
|
| 159 |
+
super(ConvolutionModule, self).__init__()
|
| 160 |
+
|
| 161 |
+
# Layers
|
| 162 |
+
self.layers = nn.Sequential(
|
| 163 |
+
nn.LayerNorm(dim_model, eps=1e-6),
|
| 164 |
+
Transpose(1, 2),
|
| 165 |
+
Conv1d(dim_model, 2 * dim_expand, kernel_size=1),
|
| 166 |
+
Glu(dim=1),
|
| 167 |
+
Conv1d(dim_expand, dim_expand, kernel_size, stride=stride, padding=padding, groups=dim_expand),
|
| 168 |
+
nn.BatchNorm1d(dim_expand),
|
| 169 |
+
Swish(),
|
| 170 |
+
Conv1d(dim_expand, dim_expand, kernel_size=1),
|
| 171 |
+
Transpose(1, 2),
|
| 172 |
+
nn.Dropout(p=Pdrop)
|
| 173 |
+
)
|
| 174 |
+
self.ln = nn.LayerNorm(dim_expand)
|
| 175 |
+
|
| 176 |
+
def forward(self, x):
|
| 177 |
+
return self.ln(self.layers(x)+x)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BasicLayerDec(nn.Module):
|
| 181 |
+
""" A basic Swin Transformer layer for one stage.
|
| 182 |
+
Args:
|
| 183 |
+
dim (int): Number of input channels.
|
| 184 |
+
input_resolution (tuple[int]): Input resolution.
|
| 185 |
+
depth (int): Number of blocks.
|
| 186 |
+
num_heads (int): Number of attention heads.
|
| 187 |
+
window_size (int): Local window size.
|
| 188 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 189 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 190 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 191 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 192 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 193 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 194 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 195 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 196 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
| 200 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
| 201 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
| 202 |
+
norm_before_mlp='ln'):
|
| 203 |
+
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.dim = dim
|
| 206 |
+
self.input_resolution = input_resolution
|
| 207 |
+
self.depth = depth
|
| 208 |
+
self.use_checkpoint = use_checkpoint
|
| 209 |
+
|
| 210 |
+
# build blocks
|
| 211 |
+
self.blocks = nn.ModuleList([
|
| 212 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
| 213 |
+
num_heads=num_heads, window_size=window_size,
|
| 214 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 215 |
+
mlp_ratio=mlp_ratio,
|
| 216 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 217 |
+
drop=drop, attn_drop=attn_drop,
|
| 218 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 219 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
| 220 |
+
for i in range(depth)])
|
| 221 |
+
|
| 222 |
+
# patch merging layer
|
| 223 |
+
if downsample is not None:
|
| 224 |
+
self.downsample = downsample((input_resolution[0]//2, input_resolution[1]//2), dim=dim * 2, norm_layer=norm_layer)
|
| 225 |
+
else:
|
| 226 |
+
self.downsample = None
|
| 227 |
+
|
| 228 |
+
def forward(self, x):
|
| 229 |
+
attns = []
|
| 230 |
+
if self.downsample is not None:
|
| 231 |
+
x = self.downsample(x)
|
| 232 |
+
for blk in self.blocks:
|
| 233 |
+
if self.use_checkpoint:
|
| 234 |
+
x = checkpoint.checkpoint(blk, x)
|
| 235 |
+
else:
|
| 236 |
+
x, attn = blk(x)
|
| 237 |
+
if not self.training:
|
| 238 |
+
attns.append(attn.unsqueeze(0))
|
| 239 |
+
if not self.training:
|
| 240 |
+
attn = torch.cat(attns, dim = 0)
|
| 241 |
+
attn = torch.mean(attn, dim = 0)
|
| 242 |
+
return x, attn
|
| 243 |
+
|
| 244 |
+
def extra_repr(self):
|
| 245 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class PatchExpand(nn.Module):
|
| 249 |
+
def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
|
| 250 |
+
super().__init__()
|
| 251 |
+
self.input_resolution = input_resolution
|
| 252 |
+
self.dim = dim
|
| 253 |
+
self.expand = nn.Linear(dim, 2 * dim, bias=False) if dim_scale == 2 else nn.Identity()
|
| 254 |
+
self.norm = norm_layer(dim // dim_scale)
|
| 255 |
+
|
| 256 |
+
def forward(self, x):
|
| 257 |
+
"""
|
| 258 |
+
x: B, H*W, C
|
| 259 |
+
"""
|
| 260 |
+
H, W = self.input_resolution
|
| 261 |
+
x = self.expand(x)
|
| 262 |
+
B, L, C = x.shape
|
| 263 |
+
assert L == H * W, "input feature has wrong size"
|
| 264 |
+
|
| 265 |
+
x = x.view(B, H, W, C)
|
| 266 |
+
# This is the original implementation in SwinUnet
|
| 267 |
+
# x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C // 4)
|
| 268 |
+
|
| 269 |
+
# here is our implementation
|
| 270 |
+
# can reverse patch-merging in Swin-Transformer encoder, seems helpful
|
| 271 |
+
x0, x2, x1, x3 = x.chunk(4, dim=-1)
|
| 272 |
+
x = torch.stack((x0, x1, x2, x3), dim=-1)
|
| 273 |
+
x = torch.chunk(x, C // 4, dim=-2)
|
| 274 |
+
x = torch.concat(x, dim=-1).squeeze(-2)
|
| 275 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 276 |
+
x = torch.nn.functional.pixel_shuffle(x, 2)
|
| 277 |
+
x = rearrange(x, 'b c h w -> b h w c')
|
| 278 |
+
x = x.view(B, -1, C // 4)
|
| 279 |
+
x = self.norm(x)
|
| 280 |
+
|
| 281 |
+
return x
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class InversePatchEmbed(nn.Module):
|
| 285 |
+
"""
|
| 286 |
+
Patch Embedding to 2D Image.
|
| 287 |
+
"""
|
| 288 |
+
|
| 289 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True,
|
| 290 |
+
patch_stride=16):
|
| 291 |
+
super().__init__()
|
| 292 |
+
img_size = to_2tuple(img_size)
|
| 293 |
+
patch_size = to_2tuple(patch_size)
|
| 294 |
+
patch_stride = to_2tuple(patch_stride)
|
| 295 |
+
self.img_size = img_size
|
| 296 |
+
self.patch_size = patch_size
|
| 297 |
+
self.patch_stride = patch_stride
|
| 298 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
| 299 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 300 |
+
self.flatten = flatten
|
| 301 |
+
self.in_chans = in_chans
|
| 302 |
+
self.embed_dim = embed_dim
|
| 303 |
+
|
| 304 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
| 305 |
+
|
| 306 |
+
self.proj = nn.ConvTranspose2d(embed_dim, in_chans, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
| 307 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 308 |
+
|
| 309 |
+
def forward(self, x):
|
| 310 |
+
# B, C, H, W = x.shape
|
| 311 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
| 312 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 313 |
+
x = self.norm(x)
|
| 314 |
+
if self.flatten:
|
| 315 |
+
# x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
| 316 |
+
x = x.transpose(1, 2).unflatten(2, self.grid_size).contiguous() # BNC -> BCHW
|
| 317 |
+
x = self.proj(x)
|
| 318 |
+
|
| 319 |
+
return x
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class HTSAT_Decoder(nn.Module):
|
| 323 |
+
r"""HTSAT_decoder based on the Swin Transformer
|
| 324 |
+
Args:
|
| 325 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
| 326 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
| 327 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
| 328 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
| 329 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
| 330 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
| 331 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
| 332 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
| 333 |
+
window_size (int): Window size. Default: 8
|
| 334 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 335 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 336 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 337 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 338 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 339 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 340 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 341 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
| 342 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
| 343 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
| 344 |
+
"""
|
| 345 |
+
|
| 346 |
+
def __init__(self, lan_embed_dim=512, spec_size=256, patch_size=4, patch_stride=(4, 4),
|
| 347 |
+
in_chans=1, num_classes=527,
|
| 348 |
+
embed_dim=48, depths=[1, 1, 1, 1], num_heads=[4, 8, 16, 32],
|
| 349 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 350 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
| 351 |
+
norm_layer=nn.LayerNorm,
|
| 352 |
+
ape=False, patch_norm=True,
|
| 353 |
+
use_checkpoint=False, norm_before_mlp='ln', encoder_embed_dim=96, phase=False,
|
| 354 |
+
spec_factor=8, d_attn=640, n_masker_layer=4, conv=False):
|
| 355 |
+
super(HTSAT_Decoder, self).__init__()
|
| 356 |
+
self.mel_bins = 64
|
| 357 |
+
self.spec_size = spec_size
|
| 358 |
+
self.phase = phase
|
| 359 |
+
self.patch_stride = patch_stride
|
| 360 |
+
self.patch_size = patch_size
|
| 361 |
+
self.window_size = window_size
|
| 362 |
+
self.embed_dim = embed_dim
|
| 363 |
+
self.depths = depths
|
| 364 |
+
self.ape = ape
|
| 365 |
+
self.in_chans = in_chans
|
| 366 |
+
self.num_classes = num_classes
|
| 367 |
+
self.num_heads = num_heads
|
| 368 |
+
self.num_layers = len(self.depths)
|
| 369 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
| 370 |
+
|
| 371 |
+
self.drop_rate = drop_rate
|
| 372 |
+
self.attn_drop_rate = attn_drop_rate
|
| 373 |
+
self.drop_path_rate = drop_path_rate
|
| 374 |
+
|
| 375 |
+
self.qkv_bias = qkv_bias
|
| 376 |
+
self.qk_scale = None
|
| 377 |
+
|
| 378 |
+
self.patch_norm = patch_norm
|
| 379 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
| 380 |
+
self.norm_before_mlp = norm_before_mlp
|
| 381 |
+
self.mlp_ratio = mlp_ratio
|
| 382 |
+
|
| 383 |
+
self.use_checkpoint = use_checkpoint
|
| 384 |
+
|
| 385 |
+
# process mel-spec ; used only once
|
| 386 |
+
self.freq_ratio = self.spec_size // self.mel_bins
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
# split spctrogram into non-overlapping patches
|
| 390 |
+
self.inverse_patch_embed = InversePatchEmbed(
|
| 391 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
| 392 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride=patch_stride)
|
| 393 |
+
|
| 394 |
+
patches_resolution = self.inverse_patch_embed.grid_size
|
| 395 |
+
self.patches_resolution = patches_resolution
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# stochastic depth
|
| 399 |
+
dpr = [x.item() for x in
|
| 400 |
+
torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
| 401 |
+
|
| 402 |
+
# build layers
|
| 403 |
+
self.layers = nn.ModuleList()
|
| 404 |
+
self.skip = nn.ModuleList()
|
| 405 |
+
for i_layer in range(self.num_layers):
|
| 406 |
+
layer = BasicLayerDec(dim=int(self.embed_dim * 2 ** i_layer),
|
| 407 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
| 408 |
+
patches_resolution[1] // (2 ** i_layer)),
|
| 409 |
+
depth=self.depths[i_layer],
|
| 410 |
+
num_heads=self.num_heads[i_layer],
|
| 411 |
+
window_size=self.window_size,
|
| 412 |
+
mlp_ratio=self.mlp_ratio,
|
| 413 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
| 414 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
| 415 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
| 416 |
+
norm_layer=self.norm_layer,
|
| 417 |
+
downsample=PatchExpand if (i_layer < self.num_layers - 1) else None,
|
| 418 |
+
use_checkpoint=use_checkpoint,
|
| 419 |
+
norm_before_mlp=self.norm_before_mlp)
|
| 420 |
+
self.layers.append(layer)
|
| 421 |
+
self.skip.append(
|
| 422 |
+
SkipTrans(embed_dim=lan_embed_dim, in_features=int(encoder_embed_dim * 2 ** i_layer), out_features=int(self.embed_dim * 2 ** i_layer)),
|
| 423 |
+
)
|
| 424 |
+
self.layers = self.layers[::-1]
|
| 425 |
+
self.skip = self.skip[::-1]
|
| 426 |
+
# self.skip.append(
|
| 427 |
+
# SkipTrans(embed_dim=lan_embed_dim, in_features=self.mel_bins, out_features=self.mel_bins),
|
| 428 |
+
# )
|
| 429 |
+
|
| 430 |
+
d_spec = self.mel_bins * spec_factor + 1
|
| 431 |
+
|
| 432 |
+
self.spec_norm = nn.BatchNorm2d(d_spec, momentum=0.01)
|
| 433 |
+
self.conv = conv
|
| 434 |
+
if not conv:
|
| 435 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=d_attn, nhead=8,
|
| 436 |
+
dim_feedforward=int(d_attn * self.mlp_ratio),
|
| 437 |
+
batch_first=True, dropout=0)
|
| 438 |
+
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_masker_layer)
|
| 439 |
+
|
| 440 |
+
self.mask_net = nn.Sequential(
|
| 441 |
+
nn.Linear(self.mel_bins + d_spec, d_attn),
|
| 442 |
+
nn.LayerNorm(d_attn),
|
| 443 |
+
transformer_encoder,
|
| 444 |
+
nn.Linear(d_attn, d_spec)
|
| 445 |
+
)
|
| 446 |
+
else:
|
| 447 |
+
self.mask_net = nn.Sequential(
|
| 448 |
+
nn.Linear(self.mel_bins + d_spec, d_spec),
|
| 449 |
+
nn.LayerNorm(d_spec),
|
| 450 |
+
*[ConvolutionModule(dim_model=d_spec, dim_expand=d_spec, kernel_size=9, padding='same',
|
| 451 |
+
Pdrop=0, stride=1) for i in range(n_masker_layer)]
|
| 452 |
+
)
|
| 453 |
+
if self.phase:
|
| 454 |
+
self.phase_net = nn.Sequential(
|
| 455 |
+
nn.Linear(self.mel_bins + d_spec, d_spec * 2),
|
| 456 |
+
nn.LayerNorm(d_spec * 2),
|
| 457 |
+
*[ConvolutionModule(dim_model=d_spec * 2, dim_expand=d_spec * 2, kernel_size=9, padding='same',
|
| 458 |
+
Pdrop=0, stride=1) for i in range(n_masker_layer)]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
self.film = SkipTrans(embed_dim=lan_embed_dim, in_features=encoder_embed_dim * 8, out_features=self.num_features)
|
| 462 |
+
|
| 463 |
+
self.apply(self._init_weights)
|
| 464 |
+
|
| 465 |
+
def _init_weights(self, m):
|
| 466 |
+
if isinstance(m, nn.Linear):
|
| 467 |
+
trunc_normal_(m.weight, std=.02)
|
| 468 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 469 |
+
nn.init.constant_(m.bias, 0)
|
| 470 |
+
elif isinstance(m, nn.LayerNorm):
|
| 471 |
+
nn.init.constant_(m.bias, 0)
|
| 472 |
+
nn.init.constant_(m.weight, 1.0)
|
| 473 |
+
|
| 474 |
+
# @torch.jit.ignore
|
| 475 |
+
# def no_weight_decay(self):
|
| 476 |
+
# return {'absolute_pos_embed'}
|
| 477 |
+
#
|
| 478 |
+
# @torch.jit.ignore
|
| 479 |
+
# def no_weight_decay_keywords(self):
|
| 480 |
+
# return {'relative_position_bias_table'}
|
| 481 |
+
|
| 482 |
+
def forward(self, hidden_state, skip_features, embed):
|
| 483 |
+
skip_features = skip_features[::-1]
|
| 484 |
+
# hidden_state = torch.randn(hidden_state.shape).type_as(hidden_state)
|
| 485 |
+
|
| 486 |
+
spec = skip_features[-1]
|
| 487 |
+
|
| 488 |
+
h = self.film(hidden_state, embed)
|
| 489 |
+
|
| 490 |
+
for i, (layer, f, skip) in enumerate(zip(self.layers, skip_features, self.skip)):
|
| 491 |
+
h = layer(h)[0]
|
| 492 |
+
h = skip(skip=f, embed=embed, x=h)
|
| 493 |
+
|
| 494 |
+
h = self.reshape_img2wav(self.inverse_patch_embed(h)).squeeze(1)
|
| 495 |
+
|
| 496 |
+
h = h[:, :spec.size(2), :]
|
| 497 |
+
|
| 498 |
+
spec = spec.transpose(1, 3)
|
| 499 |
+
|
| 500 |
+
spec = self.spec_norm(spec).transpose(1, 3).squeeze(1)
|
| 501 |
+
|
| 502 |
+
h = torch.concat([spec, h], dim=-1)
|
| 503 |
+
|
| 504 |
+
mask = self.mask_net(h).unsqueeze(1)
|
| 505 |
+
|
| 506 |
+
if self.phase:
|
| 507 |
+
mask_r, mask_i = torch.chunk(self.phase_net(h).unsqueeze(1), chunks=2, dim=-1)
|
| 508 |
+
return torch.sigmoid(mask), torch.tanh(mask_r), torch.tanh(mask_i)
|
| 509 |
+
else:
|
| 510 |
+
return torch.sigmoid(mask)
|
| 511 |
+
|
| 512 |
+
def reshape_img2wav(self, x):
|
| 513 |
+
# (B, 1, 256, 256)
|
| 514 |
+
x = x.reshape(x.shape[0], x.shape[1], self.freq_ratio, x.shape[2]//self.freq_ratio, x.shape[3]) # (B, 1, 4, 64, 256)
|
| 515 |
+
x = x.permute(0, 1, 3, 2, 4).contiguous()
|
| 516 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], x.shape[3] * x.shape[4])
|
| 517 |
+
x = x.permute(0, 1, 3, 2).contiguous()
|
| 518 |
+
return x
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
# if __name__ == "__main__":
|
| 522 |
+
# import torch
|
| 523 |
+
# from msclap import CLAP
|
| 524 |
+
# import os
|
| 525 |
+
# import torchaudio
|
| 526 |
+
# import torchaudio.transforms as T
|
| 527 |
+
# import numpy as np
|
| 528 |
+
# import random
|
| 529 |
+
# from torchlibrosa import Spectrogram, LogmelFilterBank
|
| 530 |
+
# clap_model = CLAP(model_fp="/home/user/202212661/clapsep/Waveformer-main/checkpoint_path/CLAP_weights_2023.pth",
|
| 531 |
+
# version='2023', use_cuda=True)
|
| 532 |
+
# text_data = [
|
| 533 |
+
# "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation",
|
| 534 |
+
# "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard",
|
| 535 |
+
# "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano",
|
| 536 |
+
# "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel",
|
| 537 |
+
# "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling",
|
| 538 |
+
# "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe",
|
| 539 |
+
# "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak",
|
| 540 |
+
# "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle",
|
| 541 |
+
# "Writing"]
|
| 542 |
+
# # Extract text embeddings
|
| 543 |
+
# text_embeddings = clap_model.get_text_embeddings(text_data)
|
| 544 |
+
# path = "/home/user/202212661/clapsep/Waveformer-main/data/FSDSoundScapes/FSDKaggle2018/train/Tearing/2232ce13.wav"
|
| 545 |
+
# # Extract audio embeddings
|
| 546 |
+
# audio_embeddings_ = clap_model.get_audio_embeddings([path])
|
| 547 |
+
#
|
| 548 |
+
# window = 'hann'
|
| 549 |
+
# center = True
|
| 550 |
+
# pad_mode = 'reflect'
|
| 551 |
+
# ref = 1.0
|
| 552 |
+
# amin = 1e-10
|
| 553 |
+
# top_db = None
|
| 554 |
+
#
|
| 555 |
+
# spectrogram_extractor = Spectrogram(n_fft=512, hop_length=160,
|
| 556 |
+
# win_length=512, window=window, center=center, pad_mode=pad_mode,
|
| 557 |
+
# freeze_parameters=True).cuda()
|
| 558 |
+
# # Logmel feature extractor
|
| 559 |
+
# logmel_extractor = LogmelFilterBank(sr=16000, n_fft=512,
|
| 560 |
+
# n_mels=64, fmin=0, fmax=8000, ref=ref, amin=amin,
|
| 561 |
+
# top_db=top_db,
|
| 562 |
+
# freeze_parameters=True).cuda()
|
| 563 |
+
#
|
| 564 |
+
# clap_model.clap.audio_encoder.base.htsat.spectrogram_extractor = spectrogram_extractor
|
| 565 |
+
# clap_model.clap.audio_encoder.base.htsat.logmel_extractor = logmel_extractor
|
| 566 |
+
#
|
| 567 |
+
# features = []
|
| 568 |
+
#
|
| 569 |
+
#
|
| 570 |
+
# def get_features_list(module, input, output):
|
| 571 |
+
# features.append(output)
|
| 572 |
+
#
|
| 573 |
+
#
|
| 574 |
+
# def get_features_list_basic_layer(module, input, output):
|
| 575 |
+
# features.append(output[0])
|
| 576 |
+
#
|
| 577 |
+
#
|
| 578 |
+
# clap_model.clap.audio_encoder.base.htsat.patch_embed.register_forward_hook(get_features_list)
|
| 579 |
+
# for module in clap_model.clap.audio_encoder.base.htsat.layers:
|
| 580 |
+
# module.register_forward_hook(get_features_list_basic_layer)
|
| 581 |
+
#
|
| 582 |
+
# audio_time_series, sample_rate = torchaudio.load(path)
|
| 583 |
+
# resample_rate = 16000
|
| 584 |
+
# if resample_rate != sample_rate:
|
| 585 |
+
# resampler = T.Resample(sample_rate, resample_rate)
|
| 586 |
+
# audio_time_series = resampler(audio_time_series)
|
| 587 |
+
#
|
| 588 |
+
# sample_rate = resample_rate
|
| 589 |
+
# audio_duration = 10
|
| 590 |
+
# audio_time_series = audio_time_series.reshape(-1)
|
| 591 |
+
# if audio_duration * sample_rate >= audio_time_series.shape[0]:
|
| 592 |
+
# repeat_factor = int(np.ceil((audio_duration * sample_rate) /
|
| 593 |
+
# audio_time_series.shape[0]))
|
| 594 |
+
# # Repeat audio_time_series by repeat_factor to match audio_duration
|
| 595 |
+
# audio_time_series = audio_time_series.repeat(repeat_factor)
|
| 596 |
+
# # remove excess part of audio_time_series
|
| 597 |
+
# audio_time_series = audio_time_series[0:audio_duration * sample_rate]
|
| 598 |
+
# else:
|
| 599 |
+
# # audio_time_series is longer than predefined audio duration,
|
| 600 |
+
# # so audio_time_series is trimmed
|
| 601 |
+
# start_index = random.randrange(
|
| 602 |
+
# audio_time_series.shape[0] - audio_duration * sample_rate)
|
| 603 |
+
# audio_time_series = audio_time_series[start_index:start_index +
|
| 604 |
+
# audio_duration * sample_rate]
|
| 605 |
+
#
|
model/CLAPSep_infer.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: UTF-8 -*-
|
| 3 |
+
'''
|
| 4 |
+
@Project :Waveformer-main
|
| 5 |
+
@File :CLAPSep.py
|
| 6 |
+
@IDE :PyCharm
|
| 7 |
+
@Author :Aisaka/Hao Ma @SDU
|
| 8 |
+
@Date :2024/2/28 下午1:12
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import torch
|
| 13 |
+
import laion_clap
|
| 14 |
+
from torchmetrics.audio.snr import(
|
| 15 |
+
scale_invariant_signal_noise_ratio as si_snr,
|
| 16 |
+
signal_noise_ratio as snr)
|
| 17 |
+
from torchmetrics.audio.sdr import(
|
| 18 |
+
signal_distortion_ratio as sdr,
|
| 19 |
+
scale_invariant_signal_distortion_ratio as si_sdr)
|
| 20 |
+
import copy
|
| 21 |
+
import loralib as lora
|
| 22 |
+
from torchlibrosa import ISTFT, STFT, SpecAugmentation
|
| 23 |
+
from torchlibrosa.stft import magphase
|
| 24 |
+
import librosa
|
| 25 |
+
import pytorch_lightning as pl
|
| 26 |
+
import soundfile as sf
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def loss_fn(pred, tgt):
|
| 30 |
+
return -0.9 * snr(pred, tgt).mean() - 0.1 * si_snr(pred, tgt).mean()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def set_module(model, submodule_key, module):
|
| 34 |
+
tokens = submodule_key.split('.')
|
| 35 |
+
sub_tokens = tokens[:-1]
|
| 36 |
+
cur_mod = model
|
| 37 |
+
for s in sub_tokens:
|
| 38 |
+
cur_mod = getattr(cur_mod, s)
|
| 39 |
+
setattr(cur_mod, tokens[-1], module)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def process_model(model, rank):
|
| 43 |
+
for n, module in model.named_modules():
|
| 44 |
+
if 'WindowAttention' in str(type(module)):
|
| 45 |
+
for n_, layer in module.named_modules():
|
| 46 |
+
if isinstance(layer, torch.nn.Linear):
|
| 47 |
+
lora_layer = lora.Linear(layer.in_features, layer.out_features, r=rank,
|
| 48 |
+
bias=hasattr(layer, 'bias'), merge_weights=False)
|
| 49 |
+
lora_layer.weight = layer.weight
|
| 50 |
+
if hasattr(layer, 'bias'):
|
| 51 |
+
lora_layer.bias = layer.bias
|
| 52 |
+
set_module(model, n+'.'+n_, lora_layer)
|
| 53 |
+
return model
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class LightningModule(pl.LightningModule):
|
| 57 |
+
def __init__(self, clap_model, decoder_model, lr, use_lora=False, rank=8, nfft=1024):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.phase = decoder_model.phase
|
| 60 |
+
self.lr = lr
|
| 61 |
+
self.clap_model = clap_model
|
| 62 |
+
for p in self.clap_model.parameters():
|
| 63 |
+
p.requires_grad = False
|
| 64 |
+
self.audio_branch = copy.deepcopy(self.clap_model.model.audio_branch)
|
| 65 |
+
if use_lora:
|
| 66 |
+
process_model(self.audio_branch, rank)
|
| 67 |
+
lora.mark_only_lora_as_trainable(self.audio_branch, bias='lora_only')
|
| 68 |
+
|
| 69 |
+
self.decoder_model = decoder_model
|
| 70 |
+
self.stft = STFT(n_fft=nfft, hop_length=320,
|
| 71 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 72 |
+
freeze_parameters=True)
|
| 73 |
+
self.istft = ISTFT(n_fft=nfft, hop_length=320,
|
| 74 |
+
win_length=nfft, window='hann', center=True, pad_mode='reflect',
|
| 75 |
+
freeze_parameters=True)
|
| 76 |
+
self.features = self.install_forward_hooks()
|
| 77 |
+
|
| 78 |
+
def training_step(self, batch, batch_idx):
|
| 79 |
+
self.clap_model.eval()
|
| 80 |
+
self.audio_branch.eval()
|
| 81 |
+
# print([len(x) for x in batch])
|
| 82 |
+
mixed, mixed_resample, pos_cap, neg_cap, gt, pos_sample, neg_sample = batch
|
| 83 |
+
real, imag = self.stft(mixed)
|
| 84 |
+
mag, cos, sin = magphase(real, imag)
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
a = torch.rand((1,)).type_as(gt)
|
| 87 |
+
embed_pos_a, embed_neg_a = torch.chunk(
|
| 88 |
+
self.clap_model.get_audio_embedding_from_data(torch.concat([pos_sample, neg_sample], dim=0),
|
| 89 |
+
use_tensor=True), dim=0, chunks=2)
|
| 90 |
+
embed_pos_t, embed_neg_t = torch.chunk(
|
| 91 |
+
self.clap_model.get_text_embedding(pos_cap + neg_cap, use_tensor=True), dim=0, chunks=2)
|
| 92 |
+
embed_pos = a * embed_pos_a + (1 - a) * embed_pos_t
|
| 93 |
+
embed_neg = a * embed_neg_a + (1 - a) * embed_neg_t
|
| 94 |
+
del self.features[:]
|
| 95 |
+
self.features.append(mag)
|
| 96 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 97 |
+
a = torch.rand((1,))
|
| 98 |
+
if a < 0.25:
|
| 99 |
+
loss = self.cal_loss(embed_pos, torch.zeros_like(embed_pos), mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 100 |
+
elif a < 0.5:
|
| 101 |
+
loss = self.cal_loss(torch.zeros_like(embed_neg), embed_neg, mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 102 |
+
else:
|
| 103 |
+
loss = self.cal_loss(embed_pos, embed_neg, mag, cos, sin, length=mixed.size(-1), gt=gt)
|
| 104 |
+
self.log("train_loss", loss.item(), on_epoch=True, prog_bar=True, sync_dist=True, batch_size=len(mixed))
|
| 105 |
+
del self.features[:]
|
| 106 |
+
return loss
|
| 107 |
+
|
| 108 |
+
def cal_loss(self, embed_p, embed_n, mag, cos, sin, length, gt):
|
| 109 |
+
embed = torch.nn.functional.normalize(torch.concat([embed_p, embed_n], dim=-1), dim=-1)
|
| 110 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 111 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=length)
|
| 112 |
+
return loss_fn(pred, gt)
|
| 113 |
+
|
| 114 |
+
def wav_reconstruct(self, mask, mag_x, cos_x, sin_x, length):
|
| 115 |
+
# ref: https://github.com/Audio-AGI/AudioSep/blob/main/models/resunet.py
|
| 116 |
+
# Y = |Y|cos∠Y + j|Y|sin∠Y
|
| 117 |
+
# = |Y|cos(∠X + ∠M) + j|Y|sin(∠X + ∠M)
|
| 118 |
+
# = |Y|(cos∠X cos∠M - sin∠X sin∠M) + j|Y|(sin∠X cos∠M + cos∠X sin∠M)
|
| 119 |
+
if self.phase:
|
| 120 |
+
mag_y = torch.nn.functional.relu_(mag_x * mask[0])
|
| 121 |
+
_, mask_cos, mask_sin = magphase(mask[1], mask[2])
|
| 122 |
+
cos_y = cos_x * mask_cos - sin_x * mask_sin
|
| 123 |
+
sin_y = sin_x * mask_cos + cos_x * mask_sin
|
| 124 |
+
else:
|
| 125 |
+
mag_y = torch.nn.functional.relu_(mag_x * mask)
|
| 126 |
+
cos_y = cos_x
|
| 127 |
+
sin_y = sin_x
|
| 128 |
+
pred = self.istft(mag_y * cos_y, mag_y * sin_y, length=length)
|
| 129 |
+
return pred
|
| 130 |
+
|
| 131 |
+
def validation_step(self, batch, batch_idx):
|
| 132 |
+
mixed, mixed_resample, label, neg_label, gt, _, _ = batch
|
| 133 |
+
real, imag = self.stft(mixed)
|
| 134 |
+
mag, cos, sin = magphase(real, imag)
|
| 135 |
+
self.features.append(mag)
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
embed_pos = self.clap_model.get_text_embedding(label, use_tensor=True)
|
| 138 |
+
embed_neg = self.clap_model.get_text_embedding(neg_label, use_tensor=True)
|
| 139 |
+
embed = torch.concat([embed_pos, embed_neg], dim=-1)
|
| 140 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 141 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 142 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=mixed.size(-1))
|
| 143 |
+
loss = si_snr(pred, gt).mean() - si_snr(mixed, gt).mean()
|
| 144 |
+
del self.features[:]
|
| 145 |
+
self.log("val_loss", loss, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=len(mixed))
|
| 146 |
+
return {"val_loss": loss}
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def test_step(self, batch, batch_idx):
|
| 150 |
+
mixed, mixed_resample, labels, src_path = batch
|
| 151 |
+
assert len(labels) == 1
|
| 152 |
+
src_path = src_path[0]
|
| 153 |
+
save_path = src_path.replace('/data/sound/audioset/audios_32k',
|
| 154 |
+
'data_engine_infer/audioset_separation_child_label')[:-4]
|
| 155 |
+
os.makedirs(save_path, exist_ok=True)
|
| 156 |
+
real, imag = self.stft(mixed)
|
| 157 |
+
mag, cos, sin = magphase(real, imag)
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
labels = labels[0].split('|')
|
| 160 |
+
for pos_label in labels:
|
| 161 |
+
embed_pos = self.clap_model.get_text_embedding(pos_label, use_tensor=True)
|
| 162 |
+
|
| 163 |
+
neg_labels = copy.deepcopy(labels)
|
| 164 |
+
neg_labels.remove(pos_label)
|
| 165 |
+
if neg_labels:
|
| 166 |
+
neg_label = ', '.join(neg_labels)
|
| 167 |
+
embed_neg = self.clap_model.get_text_embedding(neg_label, use_tensor=True)
|
| 168 |
+
else:
|
| 169 |
+
embed_neg = torch.zeros_like(embed_pos)
|
| 170 |
+
# only positive
|
| 171 |
+
# embed = torch.concat([embed_pos, torch.zeros_like(embed_pos)], dim=1)
|
| 172 |
+
# positive and negative
|
| 173 |
+
embed = torch.concat([embed_pos, embed_neg], dim=1)
|
| 174 |
+
del self.features[:]
|
| 175 |
+
self.features.append(mag)
|
| 176 |
+
self.audio_branch({"waveform": mixed_resample})
|
| 177 |
+
mask = self.decoder_model(hidden_state=self.features[-1], skip_features=self.features[:-1], embed=embed)
|
| 178 |
+
pred = self.wav_reconstruct(mask, mag, cos, sin, length=mixed.size(-1))
|
| 179 |
+
del self.features[:]
|
| 180 |
+
sf.write(os.path.join(save_path, pos_label + '.wav'), pred.squeeze().cpu().numpy(), samplerate=32000)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def configure_optimizers(self):
|
| 185 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
|
| 186 |
+
schedular = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.3, patience=5,
|
| 187 |
+
verbose=True, min_lr=5e-6)
|
| 188 |
+
return {
|
| 189 |
+
"optimizer": optimizer,
|
| 190 |
+
"lr_scheduler": {
|
| 191 |
+
"scheduler": schedular,
|
| 192 |
+
"interval": "epoch",
|
| 193 |
+
"monitor": "val_loss"
|
| 194 |
+
},
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
def install_forward_hooks(self):
|
| 198 |
+
features = []
|
| 199 |
+
spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
| 200 |
+
freq_drop_width=8, freq_stripes_num=2)
|
| 201 |
+
|
| 202 |
+
def get_features_list(_, __, output):
|
| 203 |
+
features.append(output)
|
| 204 |
+
|
| 205 |
+
def get_features_list_basic_layer(_, __, output):
|
| 206 |
+
features.append(output[0])
|
| 207 |
+
|
| 208 |
+
def spec_augmentation_hook(_, __, out):
|
| 209 |
+
out = out.transpose(1, 3)
|
| 210 |
+
out = spec_augmenter(out)
|
| 211 |
+
return out.transpose(1, 3)
|
| 212 |
+
|
| 213 |
+
def spectrogram_padding(_, __, out):
|
| 214 |
+
return torch.nn.functional.pad(out, (0, 0, 0, 1024 - out.size(2)))
|
| 215 |
+
|
| 216 |
+
self.clap_model.model.audio_branch.bn0.register_forward_hook(spec_augmentation_hook)
|
| 217 |
+
self.audio_branch.spectrogram_extractor.register_forward_hook(spectrogram_padding)
|
| 218 |
+
self.audio_branch.patch_embed.register_forward_hook(get_features_list)
|
| 219 |
+
for module in self.audio_branch.layers:
|
| 220 |
+
module.register_forward_hook(get_features_list_basic_layer)
|
| 221 |
+
return features
|
| 222 |
+
|
| 223 |
+
# # this will only save tuned parameters during training
|
| 224 |
+
# def on_save_checkpoint(self, checkpoint):
|
| 225 |
+
# weights = checkpoint['state_dict']
|
| 226 |
+
# new_dict = {}
|
| 227 |
+
# for k, v in weights.items():
|
| 228 |
+
# if any(e in k for e in ['lora', 'attn.qkv.bias', 'attn.proj.bias', 'decoder_model']):
|
| 229 |
+
# new_dict[k] = v
|
| 230 |
+
# checkpoint['state_dict'] = new_dict
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
model/__init__.py
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# torch
|
| 2 |
+
librosa
|
| 3 |
+
# torchaudio
|
| 4 |
+
# torchvision
|
| 5 |
+
pytorch-lightning==2.4.0
|
| 6 |
+
tensorboard==2.18.0
|
| 7 |
+
torchlibrosa
|
| 8 |
+
numpy==1.26.4
|
| 9 |
+
einops
|
| 10 |
+
loralib
|
| 11 |
+
transformers==4.30.2
|
| 12 |
+
laion-clap
|
| 13 |
+
matplotlib
|
run.sh
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
exp_dir=experiments/ClearSep_audioset_32k
|
| 4 |
+
|
| 5 |
+
resume_ckpt="${exp_dir}/checkpoints/last.ckpt"
|
| 6 |
+
|
| 7 |
+
python train.py $exp_dir \
|
| 8 |
+
--resume_ckpt $resume_ckpt \
|
| 9 |
+
--use_cuda \
|
| 10 |
+
--gpu_ids 0 1 2 3
|
| 11 |
+
|
train.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import torch
|
| 4 |
+
import torch.utils.data
|
| 5 |
+
import pytorch_lightning as pl
|
| 6 |
+
import laion_clap
|
| 7 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
| 8 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
| 9 |
+
from model.CLAPSep_decoder import HTSAT_Decoder
|
| 10 |
+
from model.CLAPSep import LightningModule
|
| 11 |
+
import argparse
|
| 12 |
+
from helpers import utils as local_utils
|
| 13 |
+
from dataset import CLAPSepDataSet, CLAPSepDataEngineDataSet
|
| 14 |
+
|
| 15 |
+
import wandb
|
| 16 |
+
from pytorch_lightning.loggers import WandbLogger
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def main(args):
|
| 20 |
+
torch.set_float32_matmul_precision('medium')
|
| 21 |
+
# Load dataset
|
| 22 |
+
data_train = CLAPSepDataEngineDataSet(**args.train_data)
|
| 23 |
+
# data_train = CLAPSepDataSet(**args.train_data)
|
| 24 |
+
logging.info("Loaded train dataset at %s containing %d elements" %
|
| 25 |
+
(args.train_data['data_list'], len(data_train)))
|
| 26 |
+
data_val = CLAPSepDataSet(**args.val_data)
|
| 27 |
+
logging.info("Loaded test dataset at %s containing %d elements" %
|
| 28 |
+
(args.val_data['data_list'], len(data_val)))
|
| 29 |
+
train_loader = torch.utils.data.DataLoader(data_train,
|
| 30 |
+
batch_size=args.batch_size,
|
| 31 |
+
shuffle=True,
|
| 32 |
+
num_workers=args.n_workers,
|
| 33 |
+
pin_memory=True)
|
| 34 |
+
val_loader = torch.utils.data.DataLoader(data_val,
|
| 35 |
+
batch_size=args.eval_batch_size,
|
| 36 |
+
shuffle=False,
|
| 37 |
+
num_workers=args.n_workers,
|
| 38 |
+
pin_memory=True)
|
| 39 |
+
|
| 40 |
+
clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cpu')
|
| 41 |
+
clap_model.load_ckpt(args.clap_path)
|
| 42 |
+
decoder = HTSAT_Decoder(**args.model)
|
| 43 |
+
lightning_module = LightningModule(clap_model, decoder, lr=args.optim['lr'],
|
| 44 |
+
use_lora=args.lora,
|
| 45 |
+
rank=args.lora_rank,
|
| 46 |
+
nfft=args.nfft,)
|
| 47 |
+
|
| 48 |
+
checkpoint_callback = ModelCheckpoint(dirpath=os.path.join(args.exp_dir, 'checkpoints'),
|
| 49 |
+
filename="{epoch:02d}-{step}-{val_loss:.2f}",
|
| 50 |
+
monitor="val_loss",
|
| 51 |
+
mode="max",
|
| 52 |
+
save_top_k=3,
|
| 53 |
+
every_n_train_steps=args.save_ckpt_every_steps,
|
| 54 |
+
save_last=True)
|
| 55 |
+
logger = TensorBoardLogger(args.exp_dir)
|
| 56 |
+
# wandb_logger = WandbLogger(project='clapsep')
|
| 57 |
+
# wandb_logger = WandbLogger(project='clapsep', id='', resume='must')
|
| 58 |
+
# distributed_backend = "ddp_find_unused_parameters_true"
|
| 59 |
+
distributed_backend = "ddp"
|
| 60 |
+
trainer = pl.Trainer(
|
| 61 |
+
default_root_dir=args.exp_dir,
|
| 62 |
+
devices=args.gpu_ids if args.use_cuda else "auto",
|
| 63 |
+
accelerator="gpu" if args.use_cuda else "cpu",
|
| 64 |
+
benchmark=True,
|
| 65 |
+
gradient_clip_val=5.0,
|
| 66 |
+
precision='bf16-mixed',
|
| 67 |
+
limit_train_batches=1.0,
|
| 68 |
+
max_epochs=args.epochs,
|
| 69 |
+
strategy=distributed_backend,
|
| 70 |
+
logger=logger,
|
| 71 |
+
callbacks=[checkpoint_callback],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if os.path.exists(args.resume_ckpt):
|
| 75 |
+
print('Load resume ckpt:', args.resume_ckpt)
|
| 76 |
+
trainer.fit(model=lightning_module, train_dataloaders=train_loader, val_dataloaders=val_loader,
|
| 77 |
+
ckpt_path=args.resume_ckpt)
|
| 78 |
+
elif os.path.exists(args.init_ckpt):
|
| 79 |
+
print('Load init ckpt:', args.init_ckpt)
|
| 80 |
+
weights = torch.load(args.init_ckpt, map_location='cpu')['state_dict']
|
| 81 |
+
lightning_module.load_state_dict(weights, strict=False)
|
| 82 |
+
trainer.fit(model=lightning_module, train_dataloaders=train_loader, val_dataloaders=val_loader)
|
| 83 |
+
else:
|
| 84 |
+
print('Training from scratch')
|
| 85 |
+
trainer.fit(model=lightning_module, train_dataloaders=train_loader, val_dataloaders=val_loader)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
if __name__ == '__main__':
|
| 89 |
+
parser = argparse.ArgumentParser()
|
| 90 |
+
# Data Params
|
| 91 |
+
parser.add_argument('exp_dir', type=str,
|
| 92 |
+
default='./experiments/CLAPSep_base',
|
| 93 |
+
help="Path to save checkpoints and logs.")
|
| 94 |
+
parser.add_argument('--init_ckpt', type=str, default='')
|
| 95 |
+
parser.add_argument('--resume_ckpt', type=str, default='')
|
| 96 |
+
|
| 97 |
+
parser.add_argument('--multi_label_training', dest='multi_label_training', action='store_true',
|
| 98 |
+
help="Whether to multi label training")
|
| 99 |
+
|
| 100 |
+
parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
|
| 101 |
+
help="Whether to use cuda")
|
| 102 |
+
parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
|
| 103 |
+
help="List of GPU ids used for training. "
|
| 104 |
+
"Eg., --gpu_ids 2 4. All GPUs are used by default.")
|
| 105 |
+
|
| 106 |
+
args = parser.parse_args()
|
| 107 |
+
|
| 108 |
+
# Set the random seed for reproducible experiments
|
| 109 |
+
pl.seed_everything(114514)
|
| 110 |
+
# Set up checkpoints
|
| 111 |
+
if not os.path.exists(args.exp_dir):
|
| 112 |
+
os.makedirs(args.exp_dir)
|
| 113 |
+
|
| 114 |
+
# Load model and training params
|
| 115 |
+
params = local_utils.Params(os.path.join(args.exp_dir, 'config.json'))
|
| 116 |
+
for k, v in params.__dict__.items():
|
| 117 |
+
vars(args)[k] = v
|
| 118 |
+
main(args)
|