Model save
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
model-index:
|
12 |
+
- name: cls_train_llama3_v1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# cls_train_llama3_v1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6482
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0002
|
43 |
+
- train_batch_size: 2
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 8
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: constant
|
50 |
+
- lr_scheduler_warmup_ratio: 0.03
|
51 |
+
- num_epochs: 2
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
58 |
+
| 0.8592 | 0.2146 | 50 | 0.8151 |
|
59 |
+
| 0.7874 | 0.4292 | 100 | 0.7651 |
|
60 |
+
| 0.6932 | 0.6438 | 150 | 0.7275 |
|
61 |
+
| 0.6738 | 0.8584 | 200 | 0.7003 |
|
62 |
+
| 0.5692 | 1.0730 | 250 | 0.6846 |
|
63 |
+
| 0.5493 | 1.2876 | 300 | 0.6756 |
|
64 |
+
| 0.5267 | 1.5021 | 350 | 0.6653 |
|
65 |
+
| 0.595 | 1.7167 | 400 | 0.6550 |
|
66 |
+
| 0.5441 | 1.9313 | 450 | 0.6482 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- PEFT 0.11.1
|
72 |
+
- Transformers 4.41.0
|
73 |
+
- Pytorch 2.2.1+cu121
|
74 |
+
- Datasets 2.19.1
|
75 |
+
- Tokenizers 0.19.1
|