Sorour commited on
Commit
d07330f
1 Parent(s): 38bd19e

Model save

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: cls_headline_mistral_v3
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # cls_headline_mistral_v3
20
+
21
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2478
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 2
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 8
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: constant
50
+ - lr_scheduler_warmup_ratio: 0.03
51
+ - num_epochs: 2
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.2731 | 0.4520 | 20 | 0.2672 |
59
+ | 0.2544 | 0.9040 | 40 | 0.2531 |
60
+ | 0.2155 | 1.3559 | 60 | 0.2514 |
61
+ | 0.2225 | 1.8079 | 80 | 0.2478 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - PEFT 0.11.1
67
+ - Transformers 4.41.1
68
+ - Pytorch 2.3.0+cu121
69
+ - Datasets 2.19.1
70
+ - Tokenizers 0.19.1