Sorour commited on
Commit
152fec2
1 Parent(s): 33d8a50

Model save

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: cls_finred_llama3_v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # cls_finred_llama3_v1
20
+
21
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4061
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 2
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 8
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: constant
50
+ - lr_scheduler_warmup_ratio: 0.03
51
+ - num_epochs: 2
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.7071 | 0.1116 | 20 | 0.6759 |
59
+ | 0.6162 | 0.2232 | 40 | 0.6174 |
60
+ | 0.6143 | 0.3347 | 60 | 0.5845 |
61
+ | 0.5753 | 0.4463 | 80 | 0.5507 |
62
+ | 0.5712 | 0.5579 | 100 | 0.5225 |
63
+ | 0.5216 | 0.6695 | 120 | 0.5105 |
64
+ | 0.4931 | 0.7810 | 140 | 0.4920 |
65
+ | 0.482 | 0.8926 | 160 | 0.4733 |
66
+ | 0.4562 | 1.0042 | 180 | 0.4624 |
67
+ | 0.3635 | 1.1158 | 200 | 0.4631 |
68
+ | 0.3619 | 1.2273 | 220 | 0.4538 |
69
+ | 0.351 | 1.3389 | 240 | 0.4452 |
70
+ | 0.3458 | 1.4505 | 260 | 0.4392 |
71
+ | 0.3397 | 1.5621 | 280 | 0.4290 |
72
+ | 0.298 | 1.6736 | 300 | 0.4278 |
73
+ | 0.2902 | 1.7852 | 320 | 0.4196 |
74
+ | 0.3425 | 1.8968 | 340 | 0.4061 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - PEFT 0.11.1
80
+ - Transformers 4.41.1
81
+ - Pytorch 2.3.0+cu121
82
+ - Datasets 2.19.1
83
+ - Tokenizers 0.19.1