Model save
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
model-index:
|
12 |
+
- name: cls_finred_llama3_v1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# cls_finred_llama3_v1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4061
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0002
|
43 |
+
- train_batch_size: 2
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 8
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: constant
|
50 |
+
- lr_scheduler_warmup_ratio: 0.03
|
51 |
+
- num_epochs: 2
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
58 |
+
| 0.7071 | 0.1116 | 20 | 0.6759 |
|
59 |
+
| 0.6162 | 0.2232 | 40 | 0.6174 |
|
60 |
+
| 0.6143 | 0.3347 | 60 | 0.5845 |
|
61 |
+
| 0.5753 | 0.4463 | 80 | 0.5507 |
|
62 |
+
| 0.5712 | 0.5579 | 100 | 0.5225 |
|
63 |
+
| 0.5216 | 0.6695 | 120 | 0.5105 |
|
64 |
+
| 0.4931 | 0.7810 | 140 | 0.4920 |
|
65 |
+
| 0.482 | 0.8926 | 160 | 0.4733 |
|
66 |
+
| 0.4562 | 1.0042 | 180 | 0.4624 |
|
67 |
+
| 0.3635 | 1.1158 | 200 | 0.4631 |
|
68 |
+
| 0.3619 | 1.2273 | 220 | 0.4538 |
|
69 |
+
| 0.351 | 1.3389 | 240 | 0.4452 |
|
70 |
+
| 0.3458 | 1.4505 | 260 | 0.4392 |
|
71 |
+
| 0.3397 | 1.5621 | 280 | 0.4290 |
|
72 |
+
| 0.298 | 1.6736 | 300 | 0.4278 |
|
73 |
+
| 0.2902 | 1.7852 | 320 | 0.4196 |
|
74 |
+
| 0.3425 | 1.8968 | 340 | 0.4061 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- PEFT 0.11.1
|
80 |
+
- Transformers 4.41.1
|
81 |
+
- Pytorch 2.3.0+cu121
|
82 |
+
- Datasets 2.19.1
|
83 |
+
- Tokenizers 0.19.1
|