Something2109
commited on
Commit
•
25d7e4e
1
Parent(s):
a96d1b8
Move the py files to a directory
Browse files- tokenizer.py → src/tokenizer.py +0 -0
- BERT.py → src/train.py +0 -0
- train.py +0 -106
tokenizer.py → src/tokenizer.py
RENAMED
File without changes
|
BERT.py → src/train.py
RENAMED
File without changes
|
train.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
from transformers import (
|
2 |
-
AutoTokenizer,
|
3 |
-
AutoModel,
|
4 |
-
BertModel,
|
5 |
-
GPT2Model,
|
6 |
-
EncoderDecoderModel,
|
7 |
-
DataCollatorForSeq2Seq,
|
8 |
-
Seq2SeqTrainer,
|
9 |
-
Seq2SeqTrainingArguments,
|
10 |
-
)
|
11 |
-
from datasets import load_dataset
|
12 |
-
from laonlp import word_tokenize
|
13 |
-
from functools import partial
|
14 |
-
import random
|
15 |
-
|
16 |
-
|
17 |
-
def group_texts(tokenizer, examples):
|
18 |
-
tokenized_inputs = [" ".join(word_tokenize(x)) for x in examples["text"]]
|
19 |
-
|
20 |
-
tokenized_inputs = tokenizer(
|
21 |
-
examples["text"],
|
22 |
-
# return_special_tokens_mask=True,
|
23 |
-
# padding="max_length",
|
24 |
-
# truncation=True,
|
25 |
-
# max_length=tokenizer.model_max_length,
|
26 |
-
# return_tensors="pt",
|
27 |
-
)
|
28 |
-
|
29 |
-
return tokenized_inputs
|
30 |
-
|
31 |
-
|
32 |
-
if __name__ == "__main__":
|
33 |
-
encoder_src = "BERT\\models\\bert-culturaX-data"
|
34 |
-
decoder_src = "NlpHUST/gpt2-vietnamese"
|
35 |
-
|
36 |
-
encoder_tokenizer = AutoTokenizer.from_pretrained(encoder_src)
|
37 |
-
decoder_tokenizer = AutoTokenizer.from_pretrained(decoder_src)
|
38 |
-
decoder_tokenizer.model_max_length = encoder_tokenizer.model_max_length
|
39 |
-
decoder_tokenizer.pad_token = decoder_tokenizer.eos_token
|
40 |
-
print(f"The max length for the tokenizer is: {encoder_tokenizer.model_max_length}")
|
41 |
-
|
42 |
-
encoder = AutoModel.from_pretrained(encoder_src)
|
43 |
-
decoder = AutoModel.from_pretrained(decoder_src)
|
44 |
-
decoder.config.max_length = decoder_tokenizer.model_max_length
|
45 |
-
|
46 |
-
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
|
47 |
-
model.config.decoder_start_token_id = decoder_tokenizer.bos_token_id
|
48 |
-
model.config.pad_token_id = decoder_tokenizer.pad_token_id
|
49 |
-
model.config.vocab_size = decoder_tokenizer.vocab_size
|
50 |
-
|
51 |
-
data_collator = DataCollatorForSeq2Seq(decoder_tokenizer, model=model)
|
52 |
-
|
53 |
-
raw_lo_dataset = load_dataset("bert/dataset/original/lo")
|
54 |
-
raw_vi_dataset = load_dataset("bert/dataset/original/vi")
|
55 |
-
|
56 |
-
train_dataset = raw_lo_dataset["train"].map(
|
57 |
-
partial(group_texts, encoder_tokenizer),
|
58 |
-
remove_columns=["text"],
|
59 |
-
batched=True,
|
60 |
-
num_proc=12,
|
61 |
-
)
|
62 |
-
eval_dataset = raw_lo_dataset["validation"].map(
|
63 |
-
partial(group_texts, encoder_tokenizer),
|
64 |
-
batched=True,
|
65 |
-
remove_columns=["text"],
|
66 |
-
)
|
67 |
-
train_labels = raw_vi_dataset["train"].map(
|
68 |
-
partial(group_texts, decoder_tokenizer),
|
69 |
-
remove_columns=["text"],
|
70 |
-
batched=True,
|
71 |
-
num_proc=12,
|
72 |
-
)
|
73 |
-
eval_labels = raw_vi_dataset["validation"].map(
|
74 |
-
partial(group_texts, decoder_tokenizer),
|
75 |
-
batched=True,
|
76 |
-
remove_columns=["text"],
|
77 |
-
)
|
78 |
-
train_dataset = train_dataset.add_column("labels", train_labels["input_ids"])
|
79 |
-
eval_dataset = eval_dataset.add_column("labels", eval_labels["input_ids"])
|
80 |
-
|
81 |
-
print(
|
82 |
-
f"the dataset contains in total {len(train_dataset)*encoder_tokenizer.model_max_length} tokens"
|
83 |
-
)
|
84 |
-
|
85 |
-
model_name = "transformer-bert-gpt"
|
86 |
-
|
87 |
-
training_args = Seq2SeqTrainingArguments(
|
88 |
-
output_dir=f"bert/models/{model_name}",
|
89 |
-
evaluation_strategy="epoch",
|
90 |
-
per_device_train_batch_size=16,
|
91 |
-
per_device_eval_batch_size=16,
|
92 |
-
weight_decay=0.01,
|
93 |
-
save_total_limit=3,
|
94 |
-
num_train_epochs=2,
|
95 |
-
push_to_hub=True,
|
96 |
-
)
|
97 |
-
|
98 |
-
trainer = Seq2SeqTrainer(
|
99 |
-
model=model,
|
100 |
-
args=training_args,
|
101 |
-
data_collator=data_collator,
|
102 |
-
train_dataset=train_dataset,
|
103 |
-
eval_dataset=eval_dataset,
|
104 |
-
)
|
105 |
-
|
106 |
-
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|