ppo-LunarLander-v2 / config.json
SolomonBlue's picture
Upload PPO LunarLander-v2 trained agent
9c000eb verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b1d1d161480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b1d1d161510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b1d1d1615a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b1d1d161630>", "_build": "<function ActorCriticPolicy._build at 0x7b1d1d1616c0>", "forward": "<function ActorCriticPolicy.forward at 0x7b1d1d161750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1d1d1617e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b1d1d161870>", "_predict": "<function ActorCriticPolicy._predict at 0x7b1d1d161900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1d1d161990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b1d1d161a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1d1d161ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1d1d0f0b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725478640215452570, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pLr4Hlow+DmtePSs1qL6+X1O9drDBPAAAAAAAAAAAZjgGPWYOsz+BGQY/gRcgvjAM4rvscpI9AAAAAAAAAAAzvZA9rlWaukNhXbxXAX48L4PBOtOfXr0AAIA/AACAPxrlUj0pSx875nw4vqcxIb6HcyC9JqqRvAAAAAAAAAAARmRIvikNSbwxDzA+NjgHvpihrT2CNa4+AAAAAAAAAAB6ddK+tn12P/Qrk72nBqC+vTB2voeVHT4AAAAAAAAAAH17hj7x8EY+sqeavrFQrr58BjQ8ox8fvQAAAAAAAAAAjRqaPUGLlrzQ8SC+gZHRvDkACD73uKY9AACAPwAAAADgVR2+9uFLvAW5dDpwVa04nX28PVclqLkAAIA/AACAPyZFlT2pvKA/nZyyPoc7Eb/l9sA9uJ3nPQAAAAAAAAAAGs9GvaQglD1q0tO84Ti/viHOSry7LZg8AAAAAAAAAACznvE9UpXDu2Q7MT3gSD89deucPAq0FL4AAIA/AACAPwDMsTvyQjA/oyc1vdwfIb+2onW7RQfpvAAAAAAAAAAABoEWvuk2F7watak5XgAON+4peD3jbNa4AACAPwAAgD9z0CA+D6ZHvDQyoboHnr442gGzvfVB1TkAAIA/AACAP0AZHL6cnh68IEgEOrmQgzf6pIg9x/AluQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSXUtqYZ2qMAWyUTegDjAF0lEdAm672fChvi3V9lChoBkdAcFi/Tb349GgHS9RoCEdAm7B3VXmvGXV9lChoBkdAbyQCiAUcn2gHTZ0DaAhHQJuwi3jMmnh1fZQoaAZHQHAQzKPn0TVoB0vXaAhHQJuxHHR1HON1fZQoaAZHQHMD06gdwNtoB0v3aAhHQJuyTgdfb9J1fZQoaAZHQF7rTqjafz1oB03oA2gIR0CbstdJ8OTadX2UKGgGR0Bwx2yHEdeZaAdL02gIR0Cbs1rpJPIodX2UKGgGR0ByweHVPN3XaAdNUgFoCEdAm7OyTY/Vy3V9lChoBkdAcgAvt+kP+WgHS9VoCEdAm7PNOmBOHnV9lChoBkdAcK5bYbsF+2gHS7NoCEdAm7RINAkcCHV9lChoBkdAQjpZpztCzGgHS7JoCEdAm7ZhD9fkWHV9lChoBkdAcXJMkQf6oGgHS8RoCEdAm7ZhZZB9kXV9lChoBkdAcuyfP5YYBWgHS/JoCEdAm7ZsqrilznV9lChoBkdAbuq6reZXuGgHS85oCEdAm7ae2iL2pXV9lChoBkdAcQXMqjJuEWgHTQ8BaAhHQJu3NXdTHbR1fZQoaAZHQGXIfQ8fV7RoB03oA2gIR0CbuVC3gDRudX2UKGgGR0BzGOlzltCRaAdLzWgIR0CbubUdq+JxdX2UKGgGR0BySkX40uUVaAdL/mgIR0Cbui9Brvb5dX2UKGgGR0ByqzVy3kPuaAdL+GgIR0Cbuuu1F6RhdX2UKGgGR0Bvg6K77Kq5aAdLwGgIR0CbvCWIoE0SdX2UKGgGR0BxRUbjtG/faAdNNQFoCEdAm7xxceKba3V9lChoBkdAbkpZIxxku2gHS+hoCEdAm71oyoGY8nV9lChoBkdAccSoqTbFj2gHS+poCEdAm724zabnYHV9lChoBkdAcQb876pHZ2gHS9xoCEdAm73um3vx6XV9lChoBkdAZEMdf9gndGgHTegDaAhHQJu+wDIRywR1fZQoaAZHQHGzTDXOGCZoB0u/aAhHQJvARAhStNl1fZQoaAZHQHJggG4ZuQ9oB0voaAhHQJvArvVmSQp1fZQoaAZHQHCJHscABDJoB0vTaAhHQJvDLIRywOh1fZQoaAZHQHG08nuy/sVoB00ZAWgIR0CbxEIq9XcQdX2UKGgGR0BxAaoS+QEIaAdNRAFoCEdAm8RmO2iL23V9lChoBkdAb7z2C/XXiGgHS8ZoCEdAm8R+mR/3FnV9lChoBkdAZuiI9C/oJWgHTegDaAhHQJvEmGJvYOF1fZQoaAZHQGEwrTYukDZoB03oA2gIR0CbxOc9GI9DdX2UKGgGR0Bx+q+FlCkXaAdL+GgIR0CbxcVLi++NdX2UKGgGR0BygAONHYpVaAdL/2gIR0CbxoJ+DvmYdX2UKGgGR0Bx5UNZvDP4aAdNQwFoCEdAm8cs+iaiK3V9lChoBkdAcSnMqjJuEWgHS8NoCEdAm8dBRZU1h3V9lChoBkdAZH+/nnuAqmgHTegDaAhHQJvH/JQtSQ51fZQoaAZHQHFa5gssg+1oB0vqaAhHQJvICBFuvU11fZQoaAZHQHG3qySmqHZoB00YAWgIR0CbyAUOuq3mdX2UKGgGR0BvzOlGgBcSaAdLq2gIR0CbyZn3ta6jdX2UKGgGR0BwbQKgIyCWaAdL0GgIR0Cbyp59mYjTdX2UKGgGR0Bw4QCaJAMVaAdL92gIR0Cby6P91loUdX2UKGgGR0BwQu8TSLIgaAdL+mgIR0Cby9of0VafdX2UKGgGR0BzJLO0LMLXaAdNJAFoCEdAm8wV45cTrXV9lChoBkdAcudl7+kxh2gHS+ZoCEdAm8yGnbZezHV9lChoBkdAcCb7r9l2/2gHS9doCEdAm8y7vb48EHV9lChoBkdAcmBrfLs8gmgHTREBaAhHQJvM7OhTOxB1fZQoaAZHQHGVwiA2AG1oB0vMaAhHQJvNFKf4AS51fZQoaAZHQHAM8pPRArxoB0vTaAhHQJvNM5uIhyN1fZQoaAZHQG07xKxs2vVoB0vGaAhHQJvNkd7v5QB1fZQoaAZHQHDzQQUYbbVoB0vPaAhHQJvN1mK64Dt1fZQoaAZHQHCSGt+1Bt1oB0vQaAhHQJvN3ATIvJ11fZQoaAZHQG48/1g6U7loB0vPaAhHQJvPXrJKaod1fZQoaAZHQG5CTOxB3RpoB0vQaAhHQJvQVwIdELJ1fZQoaAZHQGSFOCXhOxloB03oA2gIR0Cb0GTGYKIBdX2UKGgGR0Bx9QNlRP43aAdLwmgIR0Cb0QiZfD1odX2UKGgGR0AwbERaouPFaAdLw2gIR0Cb0bwkxASndX2UKGgGR0BLSUrK/20zaAdLuGgIR0Cb0dgOz6acdX2UKGgGR0Byy8vpQk5ZaAdL6WgIR0Cb0fgWac7RdX2UKGgGR0BxjzviLl3haAdLzGgIR0Cb0jJZntfHdX2UKGgGR0BxaYYl6Z6VaAdLwWgIR0Cb0kA8jiXIdX2UKGgGR0Bjcs0YTCcgaAdN6ANoCEdAm9JRInSfDnV9lChoBkdAbxsmALApKGgHS7NoCEdAm9Kmcz67/XV9lChoBkdAcBVnanJkoWgHS8toCEdAm9L8B2fTTnV9lChoBkdAco6WxQizLWgHTRMBaAhHQJvTYJswco91fZQoaAZHQHAuOXRgJC1oB0vxaAhHQJvThssQNCt1fZQoaAZHQGIpxOclPadoB03oA2gIR0Cb1BJaq0dBdX2UKGgGR0BxzPq0MPSVaAdL12gIR0Cb1MvGZNO/dX2UKGgGR0Bw3EyZa3ZxaAdLyGgIR0Cb1U0+kgwHdX2UKGgGR0BuPVT5wfhdaAdL5WgIR0Cb1jOoYNy6dX2UKGgGR0BuNQ0Kqn3taAdLt2gIR0Cb1lNA1NxmdX2UKGgGR0BxVf3fyf+TaAdL72gIR0Cb14mYSg5BdX2UKGgGR0BwYJplBhQWaAdLxWgIR0Cb2LVPepGXdX2UKGgGR0BxOJrULDyfaAdL9GgIR0Cb2NRHPNVzdX2UKGgGR0A6eZzPrv9caAdLwGgIR0Cb2WoB7u2JdX2UKGgGR0ByZ0jRlYlqaAdNCQFoCEdAm9nN5dGAkXV9lChoBkdAciO8CxNZeWgHS9poCEdAm9oxpHqeLHV9lChoBkdAb6EdV/+bVmgHTQ4BaAhHQJvaWhzvJBB1fZQoaAZHQG/Si4z7/GVoB00DAWgIR0Cb2pcC5mROdX2UKGgGR0ByibG6wt8NaAdLyWgIR0Cb2r6Q/5ckdX2UKGgGR0ByG/RnezlcaAdNJgFoCEdAm9tVfZ26kXV9lChoBkdAceasp5NXYGgHS+xoCEdAm906A8Swn3V9lChoBkdAcJzhvze41GgHS8hoCEdAm920Yj0L+nV9lChoBkdAb89s54nndWgHS8hoCEdAm93TjaPCEnV9lChoBkdAcZ8e+mFajmgHS/xoCEdAm96TZUT+N3V9lChoBkdAcTF93bEgn2gHS9VoCEdAm994q9XcQHV9lChoBkdAcBoCDEm6XmgHS8FoCEdAm9/xZ6lchXV9lChoBkdAcescWCVbA2gHS89oCEdAm+ECgf2bonV9lChoBkdAcJYLB9Cu2mgHS7BoCEdAm+EhUR3/xXV9lChoBkdAb+ihqTKT0WgHS7xoCEdAm+E0snRb8nV9lChoBkdAb/yGL1mJ32gHS/doCEdAm+HZmNBF/nV9lChoBkdAcT3KdQO4G2gHS9RoCEdAm+HtD6WPcXV9lChoBkdAcKzZR8+iamgHS+RoCEdAm+ISvHLidnV9lChoBkdAb+YWw/xDs2gHS9loCEdAm+LGkJrtV3V9lChoBkdAcR8CaqjrRmgHS/VoCEdAm+L+ws5GSnV9lChoBkdAcLsLXtjTa2gHS79oCEdAm+Pv8AJb+3V9lChoBkdAcdfddmg8KWgHS+ZoCEdAm+TgWJrLyXV9lChoBkdAb6VeC04R3GgHS8JoCEdAm+WSrPt2LnV9lChoBkdAcVQVmBe5WmgHS7RoCEdAm+YDSLIgeXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}