SolarSys2025's picture
Upload 30 files
55da406 verified
import os
import sys
import re
import numpy as np
import torch
import matplotlib.pyplot as plt
import pandas as pd
import time
from datetime import datetime
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from solar_sys_environment import SolarSys
from PG.trainer.pg import PGAgent
def main():
STATE_TO_RUN = "pennsylvania" # "pennsylvania" or "colorado" or "oklahoma"
# Set the path to your training data
DATA_FILE_PATH = "/path/to/project/training/5houses_152days_TRAIN.csv"
num_episodes = 10000
batch_size = 256
checkpoint_interval = 100000
window_size = 32
env = SolarSys(
data_path=DATA_FILE_PATH,
state=STATE_TO_RUN,
time_freq="15T"
)
# Sanity check: env I/O shapes
print("Observation space:", env.observation_space)
print("Action space :", env.action_space)
# Reset and inspect obs
obs = env.reset()
print(f"Reset returned {len(obs)} agent observations; each obs shape: {np.array(obs).shape}")
# Sample random actions and do one step
dummy_actions = np.random.rand(env.num_agents, env.action_space.shape[1]).astype(np.float32)
next_obs, rewards, done, info = env.step(dummy_actions)
print(f"Step outputs → next_obs: {len(next_obs)}×{np.array(next_obs).shape[1]}, "
f"rewards: {len(rewards)}, done: {done}")
print("Info keys:", list(info.keys()))
# Count the number of houses in each group
env.group_counts = {
0: env.agent_groups.count(0),
1: env.agent_groups.count(1)
}
print(f"Number of houses in each group: {env.group_counts}")
max_steps = env.num_steps
# Dims from the env
num_agents = env.num_agents
local_state_dim = env.observation_space.shape[1]
action_dim = env.action_space.shape[1]
# Build a unique run directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
run_name = f"pg_{STATE_TO_RUN}_{num_agents}agents_{num_episodes}eps_{timestamp}"
root_dir = os.path.join("FINALE_FINALE_FINALE", run_name)
os.makedirs(root_dir, exist_ok=True)
print(f"Saving training outputs to: {root_dir}")
logs_dir = os.path.join(root_dir, "logs")
plots_dir = os.path.join(root_dir, "plots")
os.makedirs(logs_dir, exist_ok=True)
os.makedirs(plots_dir, exist_ok=True)
# Create PG agents with use_baseline parameter
pg_agents = [
PGAgent(
state_dim=local_state_dim,
action_dim=action_dim,
lr=2e-4,
gamma=0.95,
critic_loss_coef=0.5
)
for _ in range(num_agents)
]
# Tracking / Logging Variables
episode_rewards = []
episode_total_rewards = []
block_mean_rewards = []
block_total_rewards = []
agent_rewards_log = [[] for _ in range(num_agents)]
best_mean_reward = -1e9
best_model_path = os.path.join(logs_dir, "best_model.pth")
daily_rewards = []
monthly_rewards = []
training_start_time = time.time()
episode_durations = []
total_steps_global = 0
episode_log_data = []
performance_metrics_log = []
agent_charge_log = [[] for _ in range(num_agents)]
agent_discharge_log = [[] for _ in range(num_agents)]
# Training Loop
for episode in range(1, num_episodes + 1):
episode_start_time = time.time()
obs = np.array(env.reset(), dtype=np.float32)
if episode > 1:
last_episode_metrics = env.get_episode_metrics()
last_episode_metrics['Episode'] = episode - 1
performance_metrics_log.append(last_episode_metrics)
total_reward = np.zeros(num_agents, dtype=np.float32)
done = False
step_count = 0
day_logs = []
episode_charges = [[] for _ in range(num_agents)]
episode_discharges = [[] for _ in range(num_agents)]
# Main training loop for a single episode
while not done:
# Action Selection: Each PG agent acts independently
actions = []
for i, agent in enumerate(pg_agents):
agent_action = agent.select_action(obs[i])
actions.append(agent_action)
actions = np.array(actions, dtype=np.float32)
# Step the environment
next_obs_list, rewards, done, info = env.step(actions)
next_obs = np.array(next_obs_list, dtype=np.float32)
# Store Rewards: Each agent stores its own reward
for i, agent in enumerate(pg_agents):
agent.rewards.append(rewards[i])
agent.dones.append(done)
total_reward += rewards
obs = next_obs
step_count += 1
total_steps_global += 1
day_logs.append({
"step": step_count - 1,
"grid_import_no_p2p": info["grid_import_no_p2p"],
"grid_import_with_p2p": info["grid_import_with_p2p"],
"p2p_buy": info["p2p_buy"],
"p2p_sell": info["p2p_sell"],
"costs": info["costs"],
"charge_amount": info.get("charge_amount", np.zeros(num_agents)),
"discharge_amount": info.get("discharge_amount", np.zeros(num_agents))
})
# Track actual charge/discharge actions from the environment
for i in range(num_agents):
episode_charges[i].append(info["charge_amount"][i])
episode_discharges[i].append(info["discharge_amount"][i])
if step_count >= max_steps:
break
# After each episode
sum_ep_reward = float(np.sum(total_reward))
mean_ep_reward = float(np.mean(total_reward))
episode_total_rewards.append(sum_ep_reward)
episode_rewards.append(mean_ep_reward)
daily_rewards.append(mean_ep_reward)
if len(daily_rewards) % window_size == 0:
last_totals = episode_total_rewards[-window_size:]
block_sum = sum(last_totals)
block_total_rewards.append(block_sum)
last_means = daily_rewards[-window_size:]
block_mean = sum(last_means) / window_size
block_mean_rewards.append(block_mean)
block_idx = len(block_mean_rewards)
print(
f"→ Completed Block {block_idx} "
f"| Episodes {(block_idx - 1) * window_size + 1}{block_idx * window_size} "
f"| Block Total Reward: {block_sum:.3f} "
f"| Block Mean Reward: {block_mean:.3f}"
)
for i in range(num_agents):
agent_rewards_log[i].append(total_reward[i])
agent_charge_log[i].append(np.mean(episode_charges[i]))
agent_discharge_log[i].append(np.mean(episode_discharges[i]))
steps_data = []
for entry in day_logs:
steps_data.append({
"step": entry["step"],
"p2p_buy_sum": float(np.sum(entry["p2p_buy"])),
"p2p_sell_sum": float(np.sum(entry["p2p_sell"])),
"grid_import_no_p2p_sum": float(np.sum(entry["grid_import_no_p2p"])),
"grid_import_with_p2p_sum": float(np.sum(entry["grid_import_with_p2p"]))
})
baseline_cost = np.sum([np.sum(entry["grid_import_no_p2p"]) * env.get_grid_price(entry["step"])
for entry in day_logs])
actual_cost = np.sum([np.sum(entry["costs"]) for entry in day_logs])
cost_reduction = (baseline_cost - actual_cost) / (baseline_cost + 1e-8)
# UPDATE STEP: Update each PG agent independently
for agent in pg_agents:
agent.update()
# Save best models
if mean_ep_reward > best_mean_reward:
best_mean_reward = mean_ep_reward
for i, agent in enumerate(pg_agents):
agent_path = os.path.join(logs_dir, f"best_model_agent_{i}.pth")
agent.save(agent_path)
if episode % checkpoint_interval == 0:
for i, agent in enumerate(pg_agents):
ckpt_path = os.path.join(logs_dir, f"checkpoint_{episode}_agent_{i}.pth")
agent.save(ckpt_path)
episode_end_time = time.time()
episode_duration = episode_end_time - episode_start_time
print(
f"Episode {episode}/{num_episodes} "
f"| Time per Episode: {episode_duration:.2f}s "
f"| Steps: {step_count} "
f"| Mean Reward: {mean_ep_reward:.3f} "
f"| Cost Reduction: {cost_reduction:.2%}"
)
episode_log_data.append({
"Episode": episode,
"Steps": step_count,
"Mean_Reward": mean_ep_reward,
"Total_Reward": sum_ep_reward,
"Cost_Reduction_Pct": cost_reduction * 100,
"Baseline_Cost": baseline_cost,
"Actual_Cost": actual_cost,
"Episode_Duration": episode_duration,
"Total_Charge": np.sum([np.sum(entry["charge_amount"]) for entry in day_logs]),
"Total_Discharge": np.sum([np.sum(entry["discharge_amount"]) for entry in day_logs])
})
# Periodic performance logging
if episode % 100 == 0:
avg_reward_last_100 = np.mean(daily_rewards[-100:]) if len(daily_rewards) >= 100 else np.mean(daily_rewards)
print(f" → Average reward (last 100 episodes): {avg_reward_last_100:.3f}")
# Final episode metrics
final_episode_metrics = env.get_episode_metrics()
final_episode_metrics['Episode'] = num_episodes
performance_metrics_log.append(final_episode_metrics)
training_end_time = time.time()
total_training_time = training_end_time - training_start_time
# Save final models
print("\nSaving final models...")
for i, agent in enumerate(pg_agents):
final_path = os.path.join(logs_dir, f"final_model_agent_{i}.pth")
agent.save(final_path)
np.save(os.path.join(logs_dir, "agent_rewards.npy"), np.array(agent_rewards_log))
np.save(os.path.join(logs_dir, "mean_rewards.npy"), np.array(episode_rewards))
np.save(os.path.join(logs_dir, "total_rewards.npy"), np.array(episode_total_rewards))
# Create DataFrames
df_rewards_log = pd.DataFrame(episode_log_data)
df_perf_log = pd.DataFrame(performance_metrics_log)
df_final_log = pd.merge(df_rewards_log, df_perf_log.drop(columns=[
'degradation_cost_over_time',
'cost_savings_over_time',
'grid_reduction_over_time'
]), on="Episode")
# Helper: centered moving average
def moving_avg(series, window):
return pd.Series(series).rolling(window=window, center=True, min_periods=1).mean().to_numpy()
ma_window = 300
episodes = np.arange(1, num_episodes + 1)
# Mean Reward moving average
reward_ma = moving_avg(df_final_log["Mean_Reward"], ma_window)
plt.figure(figsize=(8, 5))
plt.plot(episodes, reward_ma, linewidth=2, label=f"Mean Reward MA (win={ma_window})")
plt.xlabel("Episode")
plt.ylabel("Mean Reward")
plt.title("PG: Mean Reward Moving Average")
plt.legend()
plt.grid(True)
plt.savefig(os.path.join(plots_dir, "mean_reward_ma.png"), dpi=200)
plt.close()
# Total Reward moving average
total_ma = moving_avg(df_final_log["Total_Reward"], ma_window)
plt.figure(figsize=(8, 5))
plt.plot(episodes, total_ma, linewidth=2, label=f"Total Reward MA (win={ma_window})")
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.title("PG: Total Reward Moving Average")
plt.legend()
plt.grid(True)
plt.savefig(os.path.join(plots_dir, "total_reward_ma.png"), dpi=200)
plt.close()
# Cost Reduction (%) moving average
cost_ma = moving_avg(df_final_log["Cost_Reduction_Pct"], ma_window)
plt.figure(figsize=(8, 5))
plt.plot(episodes, cost_ma, linewidth=2, label="Cost Reduction MA (%)")
plt.xlabel("Episode")
plt.ylabel("Cost Reduction (%)")
plt.title("PG: Cost Reduction Moving Average")
plt.legend()
plt.grid(True)
plt.savefig(os.path.join(plots_dir, "cost_reduction_ma.png"), dpi=200)
plt.close()
# Battery Degradation Cost moving average
degradation_ma = moving_avg(df_final_log["battery_degradation_cost_total"], ma_window)
plt.figure(figsize=(8, 5))
plt.plot(episodes, degradation_ma, linewidth=2, label=f"Degradation Cost MA (win={ma_window})", color='purple')
plt.xlabel("Episode")
plt.ylabel("Total Degradation Cost ($)")
plt.title("PG: Battery Degradation Cost Moving Average")
plt.legend()
plt.grid(True)
plt.savefig(os.path.join(plots_dir, "degradation_cost_ma.png"), dpi=200)
plt.close()
print(f"\nAll moving-average plots saved to: {plots_dir}")
# Save Final Logs to CSV
total_time_row = pd.DataFrame([{
"Episode": "Total_Training_Time",
"Episode_Duration": total_training_time
}])
df_to_save = pd.concat([df_final_log, total_time_row], ignore_index=True)
log_csv_path = os.path.join(logs_dir, "training_performance_log.csv")
columns_to_save = [
"Episode",
"Mean_Reward",
"Total_Reward",
"Cost_Reduction_Pct",
"Episode_Duration",
"battery_degradation_cost_total",
]
df_to_save = df_to_save[columns_to_save]
df_to_save.to_csv(log_csv_path, index=False)
print(f"Saved comprehensive training performance log to: {log_csv_path}")
# Final Timings Printout
print("\n" + "="*50)
print("TRAINING COMPLETE".center(50))
print(f"Total training time: {total_training_time:.2f} seconds")
print(f"Device used: {pg_agents[0].device}")
print("="*50)
if __name__ == "__main__":
main()