SohumS commited on
Commit
4ed3292
1 Parent(s): 911dcdc

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.89 +/- 12.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a28feb223b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a28feb22440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a28feb224d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a28feb22560>", "_build": "<function ActorCriticPolicy._build at 0x7a28feb225f0>", "forward": "<function ActorCriticPolicy.forward at 0x7a28feb22680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a28feb22710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a28feb227a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a28feb22830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a28feb228c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a28feb22950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a28feb229e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a28fecc1080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720624609630086647, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABjsb3JUiY9B+lKPp9kc75rDi89N7efOwAAAAAAAAAAs+1CvqE3xz1jumE+t9SBvvZxkzwDCju9AAAAAAAAAACAo3699mguuotclrrr00E115Vxu7TbrjkAAAAAAACAP2ZeRbxycxY+KC4HvieQS76/sGW9JfpzvQAAAAAAAAAAZqRsPBS4sroM2oy6X0k+tjR5YzkzA6Y1AACAPwAAgD9m++M8e7iNupxfDjNX72owUokgOzKpprMAAIA/AACAP01hQj0p0G26DGCQOXksjDRH0rI6eWWpuAAAgD8AAIA/M5/nu8ZwtD4PoiU8MvuJviy8bDwqgeO8AAAAAAAAAACmcJ69KVg6ums30ruq1Qg4apI7OhriU7cAAAAAAACAP6boxz2vZH0/Hl4VPWXDvb65kxM+ijgqvAAAAAAAAAAAmvnUulzXXrowzl25sxBHtJdWbbuKcYI4AACAPwAAgD+mWvI9BWsQP92sOL4eUaC+lyATPUpAib0AAAAAAAAAAJowor1IScM5nb5POeJ3iLMV0ye8Hpt/uAAAAAAAAIA/ZlN/vS2gSj68wLk9zL1evs2J1zuPiMo9AAAAAAAAAABGrwK+H7+Mu2Irprzw/448k1mcvNNpdT0AAIA/AACAP9p8Ob7bwak9iv4/PkHDab7RPC697TkIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEfMqNp/PPeMAWyUS9aMAXSUR0CVWbbZezD5dX2UKGgGR0Bx0PKW9lEraAdNWQFoCEdAlVnDtb9qDnV9lChoBkdAbI9yWAwwkGgHTTYCaAhHQJVbkTZg5R11fZQoaAZHQHIWgh4dIXloB00sAWgIR0CVX29zwMH9dX2UKGgGR0Bwl7QiRnvlaAdN9gJoCEdAlWCI7q6e5HV9lChoBkdATHZhvze41GgHS+hoCEdAlWObo4dZJXV9lChoBkdAbqJwPy08eWgHTWQBaAhHQJVjy3fAKv51fZQoaAZHQHDlEHIIWxhoB021AmgIR0CVZRcXFcY7dX2UKGgGR0BydVRKpT/AaAdNagJoCEdAlWZ2GIsRQXV9lChoBkdAcCVivPkaM2gHTToBaAhHQJVnCxMWXTp1fZQoaAZHQGMYIhY/3WZoB03oA2gIR0CVaTlImPYGdX2UKGgGR0Bw+fcrRSgoaAdNWgFoCEdAlWpWMn7YTXV9lChoBkdAPqIxpL26CmgHS7loCEdAlWtq6reZX3V9lChoBkdAPwTcmBvrGGgHS8ZoCEdAlWweVTrE+HV9lChoBkdAZU+hf0Eov2gHTegDaAhHQJVtK606YE51fZQoaAZHQEPMotL+PzZoB0vhaAhHQJVua32EkB11fZQoaAZHQFGoJiy6cy5oB0vaaAhHQJVvb/sE7nx1fZQoaAZHQGDaaC17Y05oB03oA2gIR0CVdUWkrPMTdX2UKGgGR0BC1mvW6K+BaAdLxGgIR0CVdXXNC7btdX2UKGgGR0BwvRMg2ZRbaAdNXwNoCEdAlXbyqU/wAnV9lChoBkdAYub1bqyGBWgHTegDaAhHQJV30cJdB0J1fZQoaAZHQHH17Jr+HahoB01lAWgIR0CVePMmF8G+dX2UKGgGR0Bu2yN4qwyJaAdNvAFoCEdAlZIKOgg5inV9lChoBkdAZwDvGZNO/WgHTegDaAhHQJWU2Sr5qM51fZQoaAZHQHGEEEovzvtoB02LA2gIR0CVlVRWcSXddX2UKGgGR0Bws/eqJdjYaAdNbQFoCEdAlZWdj5Kvm3V9lChoBkdAcOiFCLMs6WgHTSABaAhHQJWWXKMefZp1fZQoaAZHQG+H4pMHryFoB03/AmgIR0CVl96FdszmdX2UKGgGR0BylnLMcIZ7aAdN2gFoCEdAlZgVIiC8OHV9lChoBkdAZItDst03fmgHTegDaAhHQJWYakLx7Rh1fZQoaAZHQHBZjHXEqDtoB01NA2gIR0CVmfqt5le4dX2UKGgGR0BvR9j5KvmpaAdNdgFoCEdAlZojps41g3V9lChoBkdAcF6IP9UCJWgHTWwCaAhHQJWbBRHf/FR1fZQoaAZHQHEZ1yBCladoB00OAmgIR0CVm1DvE0iydX2UKGgGR0Bw6TjcVQANaAdNeQFoCEdAlZuamwaBJHV9lChoBkdAR3UFY+0PYmgHS8hoCEdAlZy02gnMMnV9lChoBkdAcNWSqEOAiGgHTdwBaAhHQJWeJWIXTE11fZQoaAZHQEFtv/io86poB0vOaAhHQJWfb0ulGgB1fZQoaAZHQGy3ReTmnwZoB034AmgIR0CVoR6yjYZmdX2UKGgGR0ByNkHVwxWUaAdNVgFoCEdAlaJkxIre7HV9lChoBkdAcwR5VfeDWmgHTRoBaAhHQJWkr4k/r0J1fZQoaAZHQG00uIZZSvVoB01eAWgIR0CVpY10DEFXdX2UKGgGR0BwbP8Nx2jgaAdNJwFoCEdAlacQIY3vQXV9lChoBkdAbE02OQyRCGgHTUYBaAhHQJWnb9bX6Ip1fZQoaAZHQHIm06HTI/9oB01aAWgIR0CVqmEaVD8cdX2UKGgGR0BwYZcxCY1HaAdNTQJoCEdAlawymMwUQHV9lChoBkdAcs2IGyHEdmgHTYgBaAhHQJWvY/X5FgF1fZQoaAZHQHAvpjc2zfJoB03YAWgIR0CVsQs4ku6FdX2UKGgGR0ByUXN1QqI8aAdNWwJoCEdAlbEbKifxt3V9lChoBkdAcVxr0rbxmWgHTT4BaAhHQJWymrdWQwN1fZQoaAZHQHIM0Xxe9jBoB01nAmgIR0CVsuIcinpCdX2UKGgGR0BQfo/iYLLIaAdLyGgIR0CVs1uVopQUdX2UKGgGR0ByS73RG+bmaAdNrQFoCEdAlbPUYKpkw3V9lChoBkdAcQVYISlFdGgHTVMBaAhHQJW0tPk7wKB1fZQoaAZHQHIfMfV7QcBoB02yAWgIR0CVtXfD1oQGdX2UKGgGR0Bh3+Nm16VuaAdN6ANoCEdAlbbN7KJVKnV9lChoBkdATOffZVXFLmgHS9VoCEdAlbhAaFVT73V9lChoBkdAcacs2eg+QmgHTWUDaAhHQJW5YY0l7dB1fZQoaAZHQEx49f1HvttoB0vCaAhHQJW52UeMhox1fZQoaAZHQG2JVIy0rsloB00eAWgIR0CVuuYhMajvdX2UKGgGR0BwRZ3FDOTraAdNPQJoCEdAlc84nKGL1nV9lChoBkdAcJsfhuO0cGgHTUMCaAhHQJXQwbZOBUd1fZQoaAZHQG6iAeJYT0xoB03OAWgIR0CV0emsvIwNdX2UKGgGR0Byo8Kw6hg3aAdNhQFoCEdAldKoQvpQlHV9lChoBkdAcMqE12q1gGgHTTUCaAhHQJXTp4TsY2t1fZQoaAZHQHJ6QVsUIs1oB01QAWgIR0CV07JEH+qBdX2UKGgGR0Bwan/dZaFFaAdNIgFoCEdAldUsJdB0IXV9lChoBkdAcDh7Ackt3GgHTZMBaAhHQJXVWyE+Pil1fZQoaAZHQHFGZIMBp6BoB03aAWgIR0CV1wsmv4dqdX2UKGgGR0ByncnjQzDXaAdNPQFoCEdAldeEcjqv/3V9lChoBkdAbmKzYVZcLWgHTTIBaAhHQJXXnjsD4g11fZQoaAZHQGJ1kKmbb11oB03oA2gIR0CV2c08eS0TdX2UKGgGR0Btma2UjcEeaAdN3wFoCEdAldt0e2d/a3V9lChoBkdAcQgymygPE2gHTS4BaAhHQJXbvAEdNnJ1fZQoaAZHQHE2FDjR2KVoB02VAWgIR0CV3Zux8lXzdX2UKGgGR0BB5Gl67dzoaAdLwmgIR0CV4QyYXwb3dX2UKGgGR0BvhlKwpvxZaAdNNgFoCEdAleIMmF8G93V9lChoBkdAcHIrB0p3HWgHTeYCaAhHQJXin/io86p1fZQoaAZHQHEyXAmAskJoB01LAWgIR0CV4xGcFyJbdX2UKGgGR0Bi2zr5ZbIMaAdN6ANoCEdAleN+CsfaH3V9lChoBkdAcPPG8274BWgHTUEBaAhHQJXkHBrN4aB1fZQoaAZHQEsLtSAH3URoB0vPaAhHQJXlaDHwPRR1fZQoaAZHQHHHwpWmxdJoB03WAWgIR0CV5WlhPTG6dX2UKGgGR0ByRsA1ejVQaAdNvgFoCEdAleYcSK3uu3V9lChoBkdAcgWC7sfJWGgHTdYBaAhHQJXmSpLmITJ1fZQoaAZHQG7jrzwtrbhoB01/AWgIR0CV5keSSvC/dX2UKGgGR0BxKuM+/xlQaAdNNAFoCEdAlehOcMEzPHV9lChoBkdAbkPLW7OE/WgHTb8BaAhHQJXqJW0Z3s51fZQoaAZHQHI7GRRuTA5oB00VAWgIR0CV67YtQKrrdX2UKGgGR0BwzvsE7nxKaAdNKAFoCEdAlevWD6Fds3V9lChoBkdAcI6E87p3YGgHTRQBaAhHQJXsazv7WNF1fZQoaAZHQG6o4ku6ErZoB00rAWgIR0CV7N5ooNNKdX2UKGgGR0Bw+5ZA6dUbaAdNEQFoCEdAle64YvWYnnV9lChoBkdAcC4MHKOktWgHS/9oCEdAle8YP5HmR3V9lChoBkdAcJhLR8c+7mgHTQ4BaAhHQJXvbiDM/yJ1fZQoaAZHQG6FCWmgrYpoB01aAWgIR0CV7+4TK1XvdX2UKGgGR0BvWkyP+4smaAdN6AFoCEdAlfBLgjyFwnV9lChoBkdAcoif/m1YyWgHTT8BaAhHQJXxPFDOTq11fZQoaAZHQHAR+JUHY6JoB02aAmgIR0CV8YeSSvC/dX2UKGgGR0BuizfDUExJaAdNRwFoCEdAlfPM4gieNHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e2e16b7feb31e268615148a5940c04ecf73a7bcba3e26443fe2182e0846d1fd
3
+ size 148068
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a28feb223b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a28feb22440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a28feb224d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a28feb22560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a28feb225f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a28feb22680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a28feb22710>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a28feb227a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a28feb22830>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a28feb228c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a28feb22950>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a28feb229e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a28fecc1080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1720624609630086647,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABjsb3JUiY9B+lKPp9kc75rDi89N7efOwAAAAAAAAAAs+1CvqE3xz1jumE+t9SBvvZxkzwDCju9AAAAAAAAAACAo3699mguuotclrrr00E115Vxu7TbrjkAAAAAAACAP2ZeRbxycxY+KC4HvieQS76/sGW9JfpzvQAAAAAAAAAAZqRsPBS4sroM2oy6X0k+tjR5YzkzA6Y1AACAPwAAgD9m++M8e7iNupxfDjNX72owUokgOzKpprMAAIA/AACAP01hQj0p0G26DGCQOXksjDRH0rI6eWWpuAAAgD8AAIA/M5/nu8ZwtD4PoiU8MvuJviy8bDwqgeO8AAAAAAAAAACmcJ69KVg6ums30ruq1Qg4apI7OhriU7cAAAAAAACAP6boxz2vZH0/Hl4VPWXDvb65kxM+ijgqvAAAAAAAAAAAmvnUulzXXrowzl25sxBHtJdWbbuKcYI4AACAPwAAgD+mWvI9BWsQP92sOL4eUaC+lyATPUpAib0AAAAAAAAAAJowor1IScM5nb5POeJ3iLMV0ye8Hpt/uAAAAAAAAIA/ZlN/vS2gSj68wLk9zL1evs2J1zuPiMo9AAAAAAAAAABGrwK+H7+Mu2Irprzw/448k1mcvNNpdT0AAIA/AACAP9p8Ob7bwak9iv4/PkHDab7RPC697TkIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEfMqNp/PPeMAWyUS9aMAXSUR0CVWbbZezD5dX2UKGgGR0Bx0PKW9lEraAdNWQFoCEdAlVnDtb9qDnV9lChoBkdAbI9yWAwwkGgHTTYCaAhHQJVbkTZg5R11fZQoaAZHQHIWgh4dIXloB00sAWgIR0CVX29zwMH9dX2UKGgGR0Bwl7QiRnvlaAdN9gJoCEdAlWCI7q6e5HV9lChoBkdATHZhvze41GgHS+hoCEdAlWObo4dZJXV9lChoBkdAbqJwPy08eWgHTWQBaAhHQJVjy3fAKv51fZQoaAZHQHDlEHIIWxhoB021AmgIR0CVZRcXFcY7dX2UKGgGR0BydVRKpT/AaAdNagJoCEdAlWZ2GIsRQXV9lChoBkdAcCVivPkaM2gHTToBaAhHQJVnCxMWXTp1fZQoaAZHQGMYIhY/3WZoB03oA2gIR0CVaTlImPYGdX2UKGgGR0Bw+fcrRSgoaAdNWgFoCEdAlWpWMn7YTXV9lChoBkdAPqIxpL26CmgHS7loCEdAlWtq6reZX3V9lChoBkdAPwTcmBvrGGgHS8ZoCEdAlWweVTrE+HV9lChoBkdAZU+hf0Eov2gHTegDaAhHQJVtK606YE51fZQoaAZHQEPMotL+PzZoB0vhaAhHQJVua32EkB11fZQoaAZHQFGoJiy6cy5oB0vaaAhHQJVvb/sE7nx1fZQoaAZHQGDaaC17Y05oB03oA2gIR0CVdUWkrPMTdX2UKGgGR0BC1mvW6K+BaAdLxGgIR0CVdXXNC7btdX2UKGgGR0BwvRMg2ZRbaAdNXwNoCEdAlXbyqU/wAnV9lChoBkdAYub1bqyGBWgHTegDaAhHQJV30cJdB0J1fZQoaAZHQHH17Jr+HahoB01lAWgIR0CVePMmF8G+dX2UKGgGR0Bu2yN4qwyJaAdNvAFoCEdAlZIKOgg5inV9lChoBkdAZwDvGZNO/WgHTegDaAhHQJWU2Sr5qM51fZQoaAZHQHGEEEovzvtoB02LA2gIR0CVlVRWcSXddX2UKGgGR0Bws/eqJdjYaAdNbQFoCEdAlZWdj5Kvm3V9lChoBkdAcOiFCLMs6WgHTSABaAhHQJWWXKMefZp1fZQoaAZHQG+H4pMHryFoB03/AmgIR0CVl96FdszmdX2UKGgGR0BylnLMcIZ7aAdN2gFoCEdAlZgVIiC8OHV9lChoBkdAZItDst03fmgHTegDaAhHQJWYakLx7Rh1fZQoaAZHQHBZjHXEqDtoB01NA2gIR0CVmfqt5le4dX2UKGgGR0BvR9j5KvmpaAdNdgFoCEdAlZojps41g3V9lChoBkdAcF6IP9UCJWgHTWwCaAhHQJWbBRHf/FR1fZQoaAZHQHEZ1yBCladoB00OAmgIR0CVm1DvE0iydX2UKGgGR0Bw6TjcVQANaAdNeQFoCEdAlZuamwaBJHV9lChoBkdAR3UFY+0PYmgHS8hoCEdAlZy02gnMMnV9lChoBkdAcNWSqEOAiGgHTdwBaAhHQJWeJWIXTE11fZQoaAZHQEFtv/io86poB0vOaAhHQJWfb0ulGgB1fZQoaAZHQGy3ReTmnwZoB034AmgIR0CVoR6yjYZmdX2UKGgGR0ByNkHVwxWUaAdNVgFoCEdAlaJkxIre7HV9lChoBkdAcwR5VfeDWmgHTRoBaAhHQJWkr4k/r0J1fZQoaAZHQG00uIZZSvVoB01eAWgIR0CVpY10DEFXdX2UKGgGR0BwbP8Nx2jgaAdNJwFoCEdAlacQIY3vQXV9lChoBkdAbE02OQyRCGgHTUYBaAhHQJWnb9bX6Ip1fZQoaAZHQHIm06HTI/9oB01aAWgIR0CVqmEaVD8cdX2UKGgGR0BwYZcxCY1HaAdNTQJoCEdAlawymMwUQHV9lChoBkdAcs2IGyHEdmgHTYgBaAhHQJWvY/X5FgF1fZQoaAZHQHAvpjc2zfJoB03YAWgIR0CVsQs4ku6FdX2UKGgGR0ByUXN1QqI8aAdNWwJoCEdAlbEbKifxt3V9lChoBkdAcVxr0rbxmWgHTT4BaAhHQJWymrdWQwN1fZQoaAZHQHIM0Xxe9jBoB01nAmgIR0CVsuIcinpCdX2UKGgGR0BQfo/iYLLIaAdLyGgIR0CVs1uVopQUdX2UKGgGR0ByS73RG+bmaAdNrQFoCEdAlbPUYKpkw3V9lChoBkdAcQVYISlFdGgHTVMBaAhHQJW0tPk7wKB1fZQoaAZHQHIfMfV7QcBoB02yAWgIR0CVtXfD1oQGdX2UKGgGR0Bh3+Nm16VuaAdN6ANoCEdAlbbN7KJVKnV9lChoBkdATOffZVXFLmgHS9VoCEdAlbhAaFVT73V9lChoBkdAcacs2eg+QmgHTWUDaAhHQJW5YY0l7dB1fZQoaAZHQEx49f1HvttoB0vCaAhHQJW52UeMhox1fZQoaAZHQG2JVIy0rsloB00eAWgIR0CVuuYhMajvdX2UKGgGR0BwRZ3FDOTraAdNPQJoCEdAlc84nKGL1nV9lChoBkdAcJsfhuO0cGgHTUMCaAhHQJXQwbZOBUd1fZQoaAZHQG6iAeJYT0xoB03OAWgIR0CV0emsvIwNdX2UKGgGR0Byo8Kw6hg3aAdNhQFoCEdAldKoQvpQlHV9lChoBkdAcMqE12q1gGgHTTUCaAhHQJXTp4TsY2t1fZQoaAZHQHJ6QVsUIs1oB01QAWgIR0CV07JEH+qBdX2UKGgGR0Bwan/dZaFFaAdNIgFoCEdAldUsJdB0IXV9lChoBkdAcDh7Ackt3GgHTZMBaAhHQJXVWyE+Pil1fZQoaAZHQHFGZIMBp6BoB03aAWgIR0CV1wsmv4dqdX2UKGgGR0ByncnjQzDXaAdNPQFoCEdAldeEcjqv/3V9lChoBkdAbmKzYVZcLWgHTTIBaAhHQJXXnjsD4g11fZQoaAZHQGJ1kKmbb11oB03oA2gIR0CV2c08eS0TdX2UKGgGR0Btma2UjcEeaAdN3wFoCEdAldt0e2d/a3V9lChoBkdAcQgymygPE2gHTS4BaAhHQJXbvAEdNnJ1fZQoaAZHQHE2FDjR2KVoB02VAWgIR0CV3Zux8lXzdX2UKGgGR0BB5Gl67dzoaAdLwmgIR0CV4QyYXwb3dX2UKGgGR0BvhlKwpvxZaAdNNgFoCEdAleIMmF8G93V9lChoBkdAcHIrB0p3HWgHTeYCaAhHQJXin/io86p1fZQoaAZHQHEyXAmAskJoB01LAWgIR0CV4xGcFyJbdX2UKGgGR0Bi2zr5ZbIMaAdN6ANoCEdAleN+CsfaH3V9lChoBkdAcPPG8274BWgHTUEBaAhHQJXkHBrN4aB1fZQoaAZHQEsLtSAH3URoB0vPaAhHQJXlaDHwPRR1fZQoaAZHQHHHwpWmxdJoB03WAWgIR0CV5WlhPTG6dX2UKGgGR0ByRsA1ejVQaAdNvgFoCEdAleYcSK3uu3V9lChoBkdAcgWC7sfJWGgHTdYBaAhHQJXmSpLmITJ1fZQoaAZHQG7jrzwtrbhoB01/AWgIR0CV5keSSvC/dX2UKGgGR0BxKuM+/xlQaAdNNAFoCEdAlehOcMEzPHV9lChoBkdAbkPLW7OE/WgHTb8BaAhHQJXqJW0Z3s51fZQoaAZHQHI7GRRuTA5oB00VAWgIR0CV67YtQKrrdX2UKGgGR0BwzvsE7nxKaAdNKAFoCEdAlevWD6Fds3V9lChoBkdAcI6E87p3YGgHTRQBaAhHQJXsazv7WNF1fZQoaAZHQG6o4ku6ErZoB00rAWgIR0CV7N5ooNNKdX2UKGgGR0Bw+5ZA6dUbaAdNEQFoCEdAle64YvWYnnV9lChoBkdAcC4MHKOktWgHS/9oCEdAle8YP5HmR3V9lChoBkdAcJhLR8c+7mgHTQ4BaAhHQJXvbiDM/yJ1fZQoaAZHQG6FCWmgrYpoB01aAWgIR0CV7+4TK1XvdX2UKGgGR0BvWkyP+4smaAdN6AFoCEdAlfBLgjyFwnV9lChoBkdAcoif/m1YyWgHTT8BaAhHQJXxPFDOTq11fZQoaAZHQHAR+JUHY6JoB02aAmgIR0CV8YeSSvC/dX2UKGgGR0BuizfDUExJaAdNRwFoCEdAlfPM4gieNHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9de5130c09174d7ce00650ecf3889ebd8b337f37ddadc394e6eb8552b742377b
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ee3e9f572ce8031871196bfaf8530fca8dfa2056594dfd466fd7520b6fe309a
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.88745703988707, "std_reward": 12.846171389711767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-10T15:43:58.217146"}