aarimond commited on
Commit
db5101d
1 Parent(s): ffe9ae0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -175
README.md CHANGED
@@ -24,197 +24,61 @@ model-index:
24
  average: macro
25
  ---
26
 
27
- # Model Card for Model ID
28
 
29
- <!-- Provide a quick summary of what the model is/does. -->
30
 
 
 
31
 
 
32
 
33
- ## Model Details
 
 
 
 
 
 
 
 
 
 
34
 
35
- ### Model Description
36
 
37
- <!-- Provide a longer summary of what this model is. -->
38
-
39
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
40
 
41
- - **Developed by:** [More Information Needed]
42
- - **Funded by [optional]:** [More Information Needed]
43
- - **Shared by [optional]:** [More Information Needed]
44
- - **Model type:** [More Information Needed]
45
- - **Language(s) (NLP):** [More Information Needed]
46
- - **License:** [More Information Needed]
47
- - **Finetuned from model [optional]:** [More Information Needed]
48
 
49
- ### Model Sources [optional]
 
 
50
 
51
- <!-- Provide the basic links for the model. -->
52
 
53
- - **Repository:** [More Information Needed]
54
- - **Paper [optional]:** [More Information Needed]
55
- - **Demo [optional]:** [More Information Needed]
 
56
 
57
- ## Uses
58
 
59
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
60
 
61
- ### Direct Use
62
-
63
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Downstream Use [optional]
68
-
69
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
70
-
71
- [More Information Needed]
72
-
73
- ### Out-of-Scope Use
74
-
75
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
76
-
77
- [More Information Needed]
78
-
79
- ## Bias, Risks, and Limitations
80
-
81
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Recommendations
86
-
87
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
88
-
89
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
90
-
91
- ## How to Get Started with the Model
92
-
93
- Use the code below to get started with the model.
94
-
95
- [More Information Needed]
96
-
97
- ## Training Details
98
-
99
- ### Training Data
100
-
101
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
102
-
103
- [More Information Needed]
104
-
105
- ### Training Procedure
106
-
107
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
108
-
109
- #### Preprocessing [optional]
110
-
111
- [More Information Needed]
112
-
113
-
114
- #### Training Hyperparameters
115
-
116
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
117
-
118
- #### Speeds, Sizes, Times [optional]
119
-
120
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
121
-
122
- [More Information Needed]
123
-
124
- ## Evaluation
125
-
126
- <!-- This section describes the evaluation protocols and provides the results. -->
127
-
128
- ### Testing Data, Factors & Metrics
129
-
130
- #### Testing Data
131
-
132
- <!-- This should link to a Dataset Card if possible. -->
133
-
134
- [More Information Needed]
135
-
136
- #### Factors
137
-
138
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
139
-
140
- [More Information Needed]
141
-
142
- #### Metrics
143
-
144
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
145
-
146
- [More Information Needed]
147
-
148
- ### Results
149
-
150
- [More Information Needed]
151
-
152
- #### Summary
153
-
154
-
155
-
156
- ## Model Examination [optional]
157
-
158
- <!-- Relevant interpretability work for the model goes here -->
159
-
160
- [More Information Needed]
161
-
162
- ## Environmental Impact
163
-
164
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
165
-
166
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
167
-
168
- - **Hardware Type:** [More Information Needed]
169
- - **Hours used:** [More Information Needed]
170
- - **Cloud Provider:** [More Information Needed]
171
- - **Compute Region:** [More Information Needed]
172
- - **Carbon Emitted:** [More Information Needed]
173
-
174
- ## Technical Specifications [optional]
175
-
176
- ### Model Architecture and Objective
177
-
178
- [More Information Needed]
179
-
180
- ### Compute Infrastructure
181
-
182
- [More Information Needed]
183
-
184
- #### Hardware
185
-
186
- [More Information Needed]
187
-
188
- #### Software
189
-
190
- [More Information Needed]
191
-
192
- ## Citation [optional]
193
-
194
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
195
-
196
- **BibTeX:**
197
-
198
- [More Information Needed]
199
-
200
- **APA:**
201
-
202
- [More Information Needed]
203
-
204
- ## Glossary [optional]
205
-
206
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
207
-
208
- [More Information Needed]
209
-
210
- ## More Information [optional]
211
 
212
- [More Information Needed]
213
 
214
- ## Model Card Authors [optional]
215
 
216
- [More Information Needed]
 
217
 
218
- ## Model Card Contact
219
 
220
- [More Information Needed]
 
24
  average: macro
25
  ---
26
 
27
+ # LENU - Legal Entity Name Understanding for Portugal
28
 
 
29
 
30
+ A [BERT multilingual](https://huggingface.co/google-bert/bert-base-multilingual-uncased) based model model fine-tuned on Portuguese legal entity names (jurisdiction PT) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei)
31
+ (LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list).
32
 
33
+ ---------------
34
 
35
+ <h1 align="center">
36
+ <a href="https://gleif.org">
37
+ <img src="http://sdglabs.ai/wp-content/uploads/2022/07/gleif-logo-new.png" width="220px" style="display: inherit">
38
+ </a>
39
+ </h1><br>
40
+ <h3 align="center">in collaboration with</h3>
41
+ <h1 align="center">
42
+ <a href="https://sociovestix.com">
43
+ <img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%">
44
+ </a>
45
+ </h1><br>
46
 
47
+ ---------------
48
 
49
+ ## Model Description
 
 
50
 
51
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
52
 
53
+ The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and
54
+ [Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction.
55
+ See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task.
56
 
57
+ The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on Portuguese legal entities and ELF Codes within the Jurisdiction "PT".
58
 
59
+ - **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix)
60
+ - **License:** Creative Commons (CC0) license
61
+ - **Finetuned from model [optional]:** bert-base-multilingual-uncased
62
+ - **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-)
63
 
64
+ # Uses
65
 
66
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
67
 
68
+ An entity's legal form is a crucial component when verifying and screening organizational identity.
69
+ The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data.
70
+ The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from
71
+ GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks,
72
+ investment firms, corporations, governments, and other large organizations to retrospectively analyze
73
+ their master data, extract the legal form from the unstructured text of the legal name and
74
+ uniformly apply an ELF code to each entity type, according to the ISO 20275 standard.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
 
76
 
77
+ # Licensing Information
78
 
79
+ This model, which is trained on LEI data, is available under Creative Commons (CC0) license.
80
+ See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data).
81
 
82
+ # Recommendations
83
 
84
+ Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.