aarimond commited on
Commit
9aa2532
·
verified ·
1 Parent(s): 821a397

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -82
README.md CHANGED
@@ -27,104 +27,90 @@ model-index:
27
  name: f1 macro
28
  args:
29
  average: macro
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ---
31
 
32
- # Model description
33
 
34
- [More Information Needed]
 
35
 
36
- ## Intended uses & limitations
37
 
38
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
39
 
40
- ## Training Procedure
41
 
42
- ### Hyperparameters
43
 
44
- The model is trained with below hyperparameters.
45
 
46
- <details>
47
- <summary> Click to expand </summary>
 
48
 
49
- | Hyperparameter | Value |
50
- |------------------------------------------------------|----------------------------------------------------------------|
51
- | memory | |
52
- | steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),<br /> 0)])), ('classifier', ComplementNB())] |
53
- | verbose | False |
54
- | feature_extraction | ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),<br /> 0)]) |
55
- | classifier | ComplementNB() |
56
- | feature_extraction__n_jobs | |
57
- | feature_extraction__remainder | drop |
58
- | feature_extraction__sparse_threshold | 0.3 |
59
- | feature_extraction__transformer_weights | |
60
- | feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>), 0)] |
61
- | feature_extraction__verbose | False |
62
- | feature_extraction__verbose_feature_names_out | True |
63
- | feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0> |
64
- | feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>) |
65
- | feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38f438b670> |
66
- | feature_extraction__abbreviations__jurisdiction | PL |
67
- | feature_extraction__abbreviations__use_endswith | True |
68
- | feature_extraction__abbreviations__use_lowercasing | True |
69
- | feature_extraction__tokenizer__analyzer | word |
70
- | feature_extraction__tokenizer__binary | True |
71
- | feature_extraction__tokenizer__decode_error | strict |
72
- | feature_extraction__tokenizer__dtype | <class 'numpy.int64'> |
73
- | feature_extraction__tokenizer__encoding | utf-8 |
74
- | feature_extraction__tokenizer__input | content |
75
- | feature_extraction__tokenizer__lowercase | False |
76
- | feature_extraction__tokenizer__max_df | 1.0 |
77
- | feature_extraction__tokenizer__max_features | |
78
- | feature_extraction__tokenizer__min_df | 1 |
79
- | feature_extraction__tokenizer__ngram_range | (1, 1) |
80
- | feature_extraction__tokenizer__preprocessor | |
81
- | feature_extraction__tokenizer__stop_words | |
82
- | feature_extraction__tokenizer__strip_accents | |
83
- | feature_extraction__tokenizer__token_pattern | (?u)\b\w\w+\b |
84
- | feature_extraction__tokenizer__tokenizer | <__main__.LegalEntityTokenizer object at 0x7f38e082ee50> |
85
- | feature_extraction__tokenizer__vocabulary | |
86
- | classifier__alpha | 1.0 |
87
- | classifier__class_prior | |
88
- | classifier__fit_prior | True |
89
- | classifier__norm | False |
90
 
91
- </details>
 
 
 
92
 
93
- ### Model Plot
94
 
95
- The model plot is below.
96
 
97
- <style>#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 {color: black;background-color: white;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 pre{padding: 0;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-toggleable {background-color: white;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-item {z-index: 1;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-parallel-item:only-child::after {width: 0;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-e1208602-57d4-43f2-85c3-031517eb1aa4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-e1208602-57d4-43f2-85c3-031517eb1aa4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;__main__.LegalEntityTokenizer object at 0x7f38e082ee50&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b22014d7-b892-49d0-a00f-77d5d3d91ace" type="checkbox" ><label for="b22014d7-b892-49d0-a00f-77d5d3d91ace" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;__main__.LegalEntityTokenizer object at 0x7f38e082ee50&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be227d86-c6ce-4eff-88e2-6efe9bed489a" type="checkbox" ><label for="be227d86-c6ce-4eff-88e2-6efe9bed489a" class="sk-toggleable__label sk-toggleable__label-arrow">feature_extraction: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;__main__.LegalEntityTokenizer object at 0x7f38e082ee50&gt;),0)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6b957cb5-d512-4dc4-8b89-0ce196c51db5" type="checkbox" ><label for="6b957cb5-d512-4dc4-8b89-0ce196c51db5" class="sk-toggleable__label sk-toggleable__label-arrow">abbreviations</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a5d85fa3-7e72-43b2-b560-cf0b9bdf1b6b" type="checkbox" ><label for="a5d85fa3-7e72-43b2-b560-cf0b9bdf1b6b" class="sk-toggleable__label sk-toggleable__label-arrow">ELFAbbreviationTransformer</label><div class="sk-toggleable__content"><pre>&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0&gt;</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2748f0f3-5698-4d09-83c0-f7a236486111" type="checkbox" ><label for="2748f0f3-5698-4d09-83c0-f7a236486111" class="sk-toggleable__label sk-toggleable__label-arrow">tokenizer</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2adc89fe-7735-42a2-8fc4-1c272b44e547" type="checkbox" ><label for="2adc89fe-7735-42a2-8fc4-1c272b44e547" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;__main__.LegalEntityTokenizer object at 0x7f38e082ee50&gt;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="330d4134-5949-4a02-985a-2a27ef3ed24c" type="checkbox" ><label for="330d4134-5949-4a02-985a-2a27ef3ed24c" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div></div></div>
 
 
 
 
 
 
98
 
99
- ## Evaluation Results
100
 
101
- You can find the details about evaluation process and the evaluation results.
102
 
103
- | Metric | Value |
104
- |----------|----------|
105
- | f1 | 0.971647 |
106
- | f1 macro | 0.522164 |
107
 
108
- # How to Get Started with the Model
109
 
110
- [More Information Needed]
111
-
112
- # Model Card Authors
113
-
114
- This model card is written by following authors:
115
-
116
- [More Information Needed]
117
-
118
- # Model Card Contact
119
-
120
- You can contact the model card authors through following channels:
121
- [More Information Needed]
122
-
123
- # Citation
124
-
125
- Below you can find information related to citation.
126
-
127
- **BibTeX:**
128
- ```
129
- [More Information Needed]
130
- ```
 
27
  name: f1 macro
28
  args:
29
  average: macro
30
+ widget:
31
+ - text: "INSTYTUT DIABETOLOGII SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ"
32
+ - text: '"METAL-SYSTEM" OGRODZENIA - SCHODY SŁAWOMIR BINKOWSKI'
33
+ - text: "GERLACH S.A."
34
+ - text: "EMU SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ SPÓŁKA KOMANDYTOWA"
35
+ - text: "JEREMIE SEED CAPITAL WOJEWÓDZTWA POMORSKIEGO FUNDUSZ INWESTYCYJNY ZAMKNIĘTY W LIKWIDACJI"
36
+ - text: "MIASTO BIELSKO-BIAŁA"
37
+ - text: 'MARKETING" KRYSTIAN GDOWKA, ARTUR OSTRĘGA SPÓŁKA JAWNA'
38
+ - text: "Bank Spółdzielczy w Poddębicach"
39
+ - text: 'Fundacja Dzieciom "POMAGAJ"'
40
+ - text: "KANCELARIA RADCÓW PRAWNYCH BRUDKIEWICZ, SUCHECKA SPÓŁKA KOMANDYTOWO-AKCYJNA"
41
+ - text: "AKADEMIA MARYNARKI WOJENNEJ IM. BOHATERÓW WESTERPLATTE"
42
+ - text: "ZGROMADZENIE SIÓSTR URSZULANEK UNII RZYMSKIEJ DOM ZAKONNY"
43
+ - text: "STOWARZYSZENIE AUTORÓW ZAIKS"
44
+ - text: "SKAT TRANSPORT PROSTA SPÓŁKA AKCYJNA"
45
+ - text: "Nationale-Nederlanden Dobrowolny Fundusz Emerytalny Nasze Jutro 2055"
46
+ - text: "STORY HOUSE EGMONT SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ"
47
+ - text: "Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej"
48
+ - text: 'ORGANIZACJA ZAKŁADOWA NSZZ "SOLIDARNOŚĆ" NR 3395 W T-MOBILE POLSKA S.A.'
49
+ - text: "CI GAMES SPÓŁKA EUROPEJSKA"
50
+ - text: "PPK Pocztylion 2040 Dobrowolny Fundusz Emerytalny"
51
+ - text: "TOWARZYSTWO UBEZPIECZEŃ WZAJEMNYCH POLSKI ZAKŁAD UBEZPIECZEŃ WZAJEMNYCH"
52
+ - text: "KABANEK JANINA POTORSKA ROBERT POTORSKI"
53
+ - text: "SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA ENERGIA"
54
+ - text: "SZOSTEK_BAR I PARTNERZY KANCELARIA PRAWNA"
55
+ - text: "MIEJSKI ZARZĄD BUDYNKÓW MIESZKALNYCH"
56
+ - text: "IZBA ADWOKACKA W KATOWICACH"
57
+ - text: '1. Niepubliczny Specjalistyczny Zakład Opieki Zdrowotnej "LUNG" Krzysztof Garbino 2. Drukarnia "GARBINO"'
58
  ---
59
 
60
+ # LENU - Legal Entity Name Understanding for Poland
61
 
62
+ A Polish Bert (uncased) model fine-tuned on Polish legal entity names (jurisdiction PL) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei)
63
+ (LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list).
64
 
65
+ ---------------
66
 
67
+ <h1 align="center">
68
+ <a href="https://gleif.org">
69
+ <img src="http://sdglabs.ai/wp-content/uploads/2022/07/gleif-logo-new.png" width="220px" style="display: inherit">
70
+ </a>
71
+ </h1><br>
72
+ <h3 align="center">in collaboration with</h3>
73
+ <h1 align="center">
74
+ <a href="https://sociovestix.com">
75
+ <img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%">
76
+ </a>
77
+ </h1><br>
78
 
79
+ ---------------
80
 
81
+ ## Model Description
82
 
83
+ <!-- Provide a longer summary of what this model is. -->
84
 
85
+ The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and
86
+ [Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction.
87
+ See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task.
88
 
89
+ The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on polish legal entities and ELF Codes within the Jurisdiction "PL".
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ - **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix)
92
+ - **License:** Creative Commons (CC0) license
93
+ - **Finetuned from model [optional]:** dkleczek/bert-base-polish-uncased-v1
94
+ - **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-)
95
 
96
+ # Uses
97
 
98
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
99
 
100
+ An entity's legal form is a crucial component when verifying and screening organizational identity.
101
+ The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data.
102
+ The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from
103
+ GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks,
104
+ investment firms, corporations, governments, and other large organizations to retrospectively analyze
105
+ their master data, extract the legal form from the unstructured text of the legal name and
106
+ uniformly apply an ELF code to each entity type, according to the ISO 20275 standard.
107
 
 
108
 
109
+ # Licensing Information
110
 
111
+ This model, which is trained on LEI data, is available under Creative Commons (CC0) license.
112
+ See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data).
 
 
113
 
114
+ # Recommendations
115
 
116
+ Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.