Question Answering
Transformers
Safetensors
English
doge
text-generation
trl
sft
grpo
custom_code
JingzeShi commited on
Commit
0eb9b62
verified
1 Parent(s): c99a82d

Delete modeling_old_doge.py

Browse files
Files changed (1) hide show
  1. modeling_old_doge.py +0 -1247
modeling_old_doge.py DELETED
@@ -1,1247 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on the Wonderful Matrices paper implementation.
5
- #
6
- # https://arxiv.org/abs/2412.11834
7
- #
8
- # Licensed under the Apache License, Version 2.0 (the "License");
9
- # you may not use this file except in compliance with the License.
10
- # You may obtain a copy of the License at
11
- #
12
- # http://www.apache.org/licenses/LICENSE-2.0
13
- #
14
- # Unless required by applicable law or agreed to in writing, software
15
- # distributed under the License is distributed on an "AS IS" BASIS,
16
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
- # See the License for the specific language governing permissions and
18
- # limitations under the License.
19
- """PyTorch Doge model."""
20
-
21
- import math
22
- from typing import Callable, List, Optional, Tuple, Union
23
-
24
- import torch
25
- import torch.nn.functional as F
26
- import torch.utils.checkpoint
27
- from torch import nn
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
- from transformers.generation import GenerationMixin
32
- from transformers.modeling_outputs import (
33
- BaseModelOutputWithPast,
34
- CausalLMOutputWithPast,
35
- SequenceClassifierOutputWithPast,
36
- )
37
- from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
38
- from transformers.modeling_utils import PreTrainedModel
39
- from transformers.processing_utils import Unpack
40
- from transformers.utils import (
41
- LossKwargs,
42
- add_start_docstrings,
43
- add_start_docstrings_to_model_forward,
44
- is_torch_greater_or_equal,
45
- logging,
46
- replace_return_docstrings,
47
- )
48
- from .configuration_doge import DogeConfig
49
-
50
- try:
51
- from einx import add as einx_add
52
- except ImportError:
53
- einx_add = None
54
-
55
- if is_torch_greater_or_equal("2.5"):
56
- from torch.nn.attention.flex_attention import flex_attention
57
-
58
-
59
- logger = logging.get_logger(__name__)
60
-
61
- _CONFIG_FOR_DOC = "DogeConfig"
62
-
63
-
64
- class RMSNorm(nn.Module):
65
- def __init__(self, hidden_size, eps=1e-6):
66
- """
67
- RMSNorm is equivalent to T5LayerNorm
68
- """
69
- super().__init__()
70
- self.weight = nn.Parameter(torch.ones(hidden_size))
71
- self.variance_epsilon = eps
72
-
73
- def forward(self, hidden_states):
74
- input_dtype = hidden_states.dtype
75
- hidden_states = hidden_states.to(torch.float32)
76
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
77
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
78
- return self.weight * hidden_states.to(input_dtype)
79
-
80
- def extra_repr(self):
81
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
82
-
83
-
84
- class Residual(nn.Module):
85
- def __init__(self, hidden_size):
86
- super().__init__()
87
- self.weight = nn.Parameter(torch.ones(hidden_size))
88
-
89
- def forward(self, residual_states, hidden_states):
90
- return self.weight * residual_states + hidden_states
91
-
92
- def extra_repr(self):
93
- return f"{tuple(self.weight.shape)}"
94
-
95
-
96
- class RotaryEmbedding(nn.Module):
97
- def __init__(self, config: Optional[DogeConfig] = None):
98
- super().__init__()
99
- self.rope_kwargs = {}
100
-
101
- if config.rope_scaling is not None:
102
- self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
103
- else:
104
- self.rope_type = "default"
105
- self.max_seq_len_cached = config.max_position_embeddings
106
- self.original_max_seq_len = config.max_position_embeddings
107
- self.base = config.rope_theta
108
-
109
- self.config = config
110
- self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
111
-
112
- inv_freq, self.attention_scaling = self.rope_init_fn(self.config, **self.rope_kwargs)
113
- self.register_buffer("inv_freq", inv_freq, persistent=False)
114
- self.original_inv_freq = self.inv_freq
115
-
116
- def _dynamic_frequency_update(self, position_ids, device):
117
- """
118
- dynamic RoPE layers should recompute `inv_freq` in the following situations:
119
- 1 - growing beyond the cached sequence length (allow scaling)
120
- 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
121
- """
122
- seq_len = torch.max(position_ids) + 1
123
- if seq_len > self.max_seq_len_cached: # growth
124
- inv_freq, self.attention_scaling = self.rope_init_fn(
125
- self.config, device, seq_len=seq_len, **self.rope_kwargs
126
- )
127
- self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
- self.max_seq_len_cached = seq_len
129
-
130
- if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
- self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
132
- self.max_seq_len_cached = self.original_max_seq_len
133
-
134
- @torch.no_grad()
135
- def forward(self, x, position_ids):
136
- if "dynamic" in self.rope_type:
137
- self._dynamic_frequency_update(position_ids, device=x.device)
138
-
139
- # core RoPE block
140
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
141
- position_ids_expanded = position_ids[:, None, :].float()
142
- # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
143
- device_type = x.device.type
144
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
145
- with torch.autocast(device_type=device_type, enabled=False):
146
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
147
- emb = torch.cat((freqs, freqs), dim=-1)
148
- cos = emb.cos()
149
- sin = emb.sin()
150
-
151
- # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
152
- cos = cos * self.attention_scaling
153
- sin = sin * self.attention_scaling
154
-
155
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
156
-
157
-
158
- def rotate_half(x):
159
- """
160
- Rotates half the hidden dims of the input.
161
- """
162
- x1 = x[..., : x.shape[-1] // 2]
163
- x2 = x[..., x.shape[-1] // 2 :]
164
- return torch.cat((-x2, x1), dim=-1)
165
-
166
-
167
- def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
168
- """Applies Rotary Position Embedding to the query and key tensors.
169
-
170
- Args:
171
- q (`torch.Tensor`): The query tensor.
172
- k (`torch.Tensor`): The key tensor.
173
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
174
- sin (`torch.Tensor`): The sine part of the rotary embedding.
175
- position_ids (`torch.Tensor`, *optional*):
176
- Deprecated and unused.
177
- unsqueeze_dim (`int`, *optional*, defaults to 1):
178
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
179
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k.
180
- For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim].
181
- Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
182
- Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
183
- Returns:
184
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
185
- """
186
- cos = cos.unsqueeze(unsqueeze_dim)
187
- sin = sin.unsqueeze(unsqueeze_dim)
188
- q_embed = (q * cos) + (rotate_half(q) * sin)
189
- k_embed = (k * cos) + (rotate_half(k) * sin)
190
- return q_embed, k_embed
191
-
192
-
193
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
194
- """
195
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
196
- The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
197
- """
198
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
199
- if n_rep == 1:
200
- return hidden_states
201
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
202
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
203
-
204
-
205
- class DogeDynamicMaskAttention(nn.Module):
206
- """Dynamic Mask Attention from 'Wonderful Matrices' paper."""
207
-
208
- def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
209
- super().__init__()
210
- self.config = config
211
- self.layer_idx = layer_idx
212
- self.head_dim = config.hidden_size // config.num_attention_heads
213
- self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
214
- self.scaling = self.head_dim ** -0.5
215
- self.attention_dropout = config.attention_dropout
216
- self.dynamic_mask_ratio = config.dynamic_mask_ratio
217
-
218
- self.ALL_ATTENTION_FUNCTIONS = {
219
- "eager": self.eager_attention_forward,
220
- "flex_attention": self.flex_attention_forward,
221
- "sdpa": self.sdpa_attention_forward,
222
- }
223
-
224
- # Q K V O projections
225
- self.q_proj = nn.Linear(
226
- config.hidden_size,
227
- config.num_attention_heads * self.head_dim,
228
- bias=config.hidden_bias
229
- )
230
- self.k_proj = nn.Linear(
231
- config.hidden_size,
232
- config.num_key_value_heads * self.head_dim,
233
- bias=config.hidden_bias
234
- )
235
- self.v_proj = nn.Linear(
236
- config.hidden_size,
237
- config.num_key_value_heads * self.head_dim,
238
- bias=config.hidden_bias
239
- )
240
- # dynamic mask for the QK^T attention score matrix
241
- self.A = nn.Parameter(
242
- torch.zeros(config.num_attention_heads)
243
- )
244
- self.dt_proj = nn.Linear(
245
- config.num_key_value_heads * self.head_dim,
246
- config.num_attention_heads,
247
- bias=config.hidden_bias
248
- )
249
- self.o_proj = nn.Linear(
250
- config.num_attention_heads * self.head_dim,
251
- config.hidden_size,
252
- bias=config.hidden_bias
253
- )
254
-
255
- def forward(
256
- self,
257
- hidden_states: torch.Tensor,
258
- position_embeddings: Tuple[torch.Tensor, torch.Tensor],
259
- attention_mask: Optional[torch.Tensor] = None,
260
- past_key_value: Optional[Cache] = None,
261
- cache_position: Optional[torch.LongTensor] = None,
262
- **kwargs,
263
- ) -> Tuple[torch.Tensor, Optional[Cache]]:
264
- input_shape = hidden_states.shape[:-1]
265
- hidden_shape = (*input_shape, -1, self.head_dim)
266
-
267
- query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
268
- key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
269
- value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
270
-
271
- cos, sin = position_embeddings
272
- query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
273
-
274
- if past_key_value is not None:
275
- # sin and cos are specific to RoPE models; cache_position needed for the static cache
276
- cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
277
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
278
-
279
- # calculate dynamic mask from value_states
280
- # NOTE: If these weights are not trained in causal mode, a mask of all ones will be returned, which will not affect the training results of causal mode
281
- # TODO: The main reason for setting causal mode is that the Flex Attention kernel does not yet support score_mod functions with learnable parameters. However, we can continue training from the causal checkpoint later.
282
- dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1))
283
- dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
284
- attn_mask = self.prepare_dynamic_mask(
285
- hidden_states=hidden_states,
286
- dynamic_mask=dynamic_mask,
287
- dynamic_mask_ratio=self.dynamic_mask_ratio,
288
- attention_mask=attention_mask,
289
- )
290
-
291
- attention_interface: Callable = self.eager_attention_forward
292
- if self.config._attn_implementation != "eager":
293
- attention_interface = self.ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
294
-
295
- attn_output = attention_interface(
296
- query_states,
297
- key_states,
298
- value_states,
299
- attention_mask=attn_mask,
300
- dropout=0.0 if not self.training else self.attention_dropout,
301
- scaling=self.scaling,
302
- **kwargs,
303
- )
304
-
305
- attn_output = attn_output.reshape(*input_shape, -1).contiguous()
306
- attn_output = self.o_proj(attn_output)
307
- return attn_output
308
-
309
- def prepare_dynamic_mask(
310
- self,
311
- hidden_states: torch.Tensor,
312
- dynamic_mask: torch.Tensor,
313
- dynamic_mask_ratio: float = 0.0,
314
- attention_mask: Optional[torch.Tensor] = None,
315
- ):
316
- """
317
- Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`.
318
-
319
- Args:
320
- hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
321
- dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`.
322
- dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value.
323
- attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
324
- """
325
- attn_mask = None
326
- if dynamic_mask is not None:
327
- attn_mask = dynamic_mask[:, :, None, :]
328
- if 0.0 < dynamic_mask_ratio < 1.0:
329
- min_type = torch.finfo(hidden_states.dtype).min
330
- num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio)
331
- if num_dynamic_mask > 0:
332
- rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values
333
- attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type)
334
- if attention_mask is not None:
335
- attn_mask = attn_mask + attention_mask[:, :, :, : attn_mask.shape[-1]]
336
- else:
337
- attn_mask = attention_mask
338
-
339
- return attn_mask
340
-
341
- def eager_attention_forward(
342
- self,
343
- query: torch.Tensor,
344
- key: torch.Tensor,
345
- value: torch.Tensor,
346
- attention_mask: Optional[torch.Tensor],
347
- scaling: float,
348
- dropout: float = 0.0,
349
- **kwargs,
350
- ) -> torch.Tensor:
351
- key_states = repeat_kv(key, self.num_key_value_groups)
352
- value_states = repeat_kv(value, self.num_key_value_groups)
353
-
354
- # compute attention scores matrix
355
- attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling
356
- if attention_mask is not None:
357
- causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
358
- attn_weights = attn_weights + causal_mask
359
-
360
- # upcast attention scores to fp32
361
- attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
362
- attn_weights = F.dropout(attn_weights, p=dropout, training=self.training)
363
-
364
- # apply attention scores to value states
365
- attn_output = torch.matmul(attn_weights, value_states)
366
- attn_output = attn_output.transpose(1, 2).contiguous()
367
- return attn_output
368
-
369
- def sdpa_attention_forward(
370
- self,
371
- query: torch.Tensor,
372
- key: torch.Tensor,
373
- value: torch.Tensor,
374
- attention_mask: Optional[torch.Tensor],
375
- scaling: float,
376
- dropout: float = 0.0,
377
- **kwargs,
378
- ) -> torch.Tensor:
379
- key = repeat_kv(key, self.num_key_value_groups)
380
- value = repeat_kv(value, self.num_key_value_groups)
381
-
382
- causal_mask = attention_mask
383
- if attention_mask is not None:
384
- causal_mask = causal_mask[:, :, :, : key.shape[-2]]
385
-
386
- # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
387
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
388
- query = query.contiguous()
389
- key = key.contiguous()
390
- value = value.contiguous()
391
-
392
- # NOTE: As of pytorch 2.5.1, cuDNN's SDPA backward pass is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
393
- torch.backends.cuda.enable_cudnn_sdp(False)
394
- attn_output = F.scaled_dot_product_attention(
395
- query,
396
- key,
397
- value,
398
- attn_mask=causal_mask,
399
- dropout_p=dropout,
400
- scale=scaling,
401
- )
402
- attn_output = attn_output.transpose(1, 2).contiguous()
403
- return attn_output
404
-
405
- def flex_attention_forward(
406
- self,
407
- query: torch.Tensor,
408
- key: torch.Tensor,
409
- value: torch.Tensor,
410
- attention_mask: Optional[torch.Tensor],
411
- scaling: float,
412
- dropout: float = 0.0,
413
- **kwargs,
414
- ) -> torch.Tensor:
415
- causal_mask = attention_mask
416
- if attention_mask is not None:
417
- causal_mask = causal_mask[:, :, :, : key.shape[-2]]
418
-
419
- # TODO: flex_attention: As of pytorch 2.5.1, captured buffers that require grad are not yet supported.
420
- # NOTE: So we only use flex_attention in inference mode.
421
-
422
- def causal_mod(score, batch, head, q_idx, kv_idx):
423
- score = score + causal_mask[batch][0][q_idx][kv_idx]
424
- return score
425
-
426
- def dynamic_mod(score, batch, head, q_idx, kv_idx):
427
- score = score + causal_mask[batch][head][q_idx][kv_idx]
428
- return score
429
-
430
- mask_mod = causal_mod if self.is_causal else dynamic_mod
431
-
432
- attn_output = flex_attention(
433
- query,
434
- key,
435
- value,
436
- score_mod=mask_mod,
437
- scale=scaling,
438
- enable_gqa=True,
439
- )
440
- attn_output = attn_output.transpose(1, 2).contiguous()
441
- return attn_output
442
-
443
-
444
- class DogeMLP(nn.Module):
445
-
446
- def __init__(self, config: DogeConfig):
447
- super().__init__()
448
- self.hidden_dim = config.hidden_size
449
- self.intermediate_dim = config.intermediate_size
450
- self.act_fn = ACT2FN[config.hidden_act]
451
-
452
- self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
453
- self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
454
- self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias)
455
-
456
- def forward(
457
- self,
458
- hidden_states: torch.Tensor,
459
- **kwargs,
460
- ) -> torch.Tensor:
461
- hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
462
- return hidden_states
463
-
464
-
465
- class DogeCDMoE(DogeMLP):
466
- """Cross Domain Mixture of Experts from 'Wonderful Matrices' paper."""
467
-
468
- def __init__(self, config: DogeConfig):
469
- super().__init__(config)
470
- self.hidden_dim = config.hidden_size
471
- self.act_fn = ACT2FN[config.hidden_act]
472
-
473
- self.expert_retrieval_dim = config.expert_retrieval_size
474
- self.num_cdmoe_experts = config.num_cdmoe_experts
475
- self.num_cdmoe_heads = config.num_cdmoe_heads
476
- self.num_cdmoe_experts_per_head = config.num_cdmoe_experts_per_head
477
- self.num_keys = int(math.sqrt(self.num_cdmoe_experts))
478
-
479
- # queries and keys for retrieval experts
480
- self.queries = nn.Linear(self.hidden_dim, self.num_cdmoe_heads * self.expert_retrieval_dim, bias=False)
481
- self.keys = nn.Parameter(torch.zeros(self.num_cdmoe_heads, self.num_keys, 2, self.expert_retrieval_dim // 2))
482
-
483
- # experts
484
- self.down_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)
485
- self.up_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)
486
-
487
- def forward(
488
- self,
489
- hidden_states: torch.Tensor,
490
- **kwargs,
491
- ) -> torch.Tensor:
492
- bsz, seq_len, _ = hidden_states.shape
493
-
494
- # get similarity with queries and keys
495
- queries = self.queries(hidden_states)
496
- queries = queries.view(bsz, seq_len, 2, self.num_cdmoe_heads, -1).permute(2, 0, 1, 3, 4)
497
- sim = torch.einsum("p b t h n, h k p n -> p b t h k", queries, self.keys)
498
-
499
- # get experts with the highest similarity
500
- (scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_cdmoe_experts_per_head, dim=-1)
501
- if einx_add is not None:
502
- all_scores = einx_add("... i, ... j -> ... (i j)", scores_x, scores_y)
503
- all_indices = einx_add("... i, ... j -> ... (i j)", indices_x * self.num_keys, indices_y)
504
- else:
505
- all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
506
- all_scores = all_scores.view(*scores_x.shape[:-1], -1)
507
- all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
508
- all_indices = all_indices.view(*indices_x.shape[:-1], -1)
509
- scores, pk_indices = all_scores.topk(self.num_cdmoe_experts_per_head, dim=-1)
510
- indices = all_indices.gather(-1, pk_indices)
511
- down_embed = self.down_embed(indices)
512
- up_embed = self.up_embed(indices)
513
-
514
- # mix experts states with cross domain states
515
- experts_weights = torch.einsum("b t d, b t h k d -> b t h k", hidden_states, down_embed)
516
- experts_weights = self.act_fn(experts_weights) * scores.softmax(dim=-1)
517
- experts_states = torch.einsum("b t h k, b t h k d -> b t d", experts_weights, up_embed)
518
- hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
519
- hidden_states = hidden_states + experts_states
520
- return hidden_states
521
-
522
-
523
- class DogeDecoderLayer(nn.Module):
524
- def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
525
- super().__init__()
526
- self.hidden_dropout = config.hidden_dropout
527
-
528
- self.pre_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
529
- self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx)
530
- self.pre_residual = Residual(config.hidden_size)
531
-
532
- self.post_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
533
- self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
534
- self.post_residual = Residual(config.hidden_size)
535
-
536
- def forward(
537
- self,
538
- hidden_states: torch.Tensor,
539
- attention_mask: Optional[torch.Tensor] = None,
540
- position_ids: Optional[torch.LongTensor] = None,
541
- past_key_value: Optional[Cache] = None,
542
- output_attentions: Optional[bool] = False,
543
- use_cache: Optional[bool] = False,
544
- cache_position: Optional[torch.LongTensor] = None,
545
- position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
546
- **kwargs,
547
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
548
-
549
- # sequence transformation
550
- residual = hidden_states
551
- hidden_states = self.pre_layernorm(hidden_states)
552
- hidden_states = self.self_attn(
553
- hidden_states=hidden_states,
554
- attention_mask=attention_mask,
555
- position_ids=position_ids,
556
- past_key_value=past_key_value,
557
- cache_position=cache_position,
558
- position_embeddings=position_embeddings,
559
- **kwargs,
560
- )
561
- self_attn_weights = None
562
- hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
563
- hidden_states = self.pre_residual(residual, hidden_states)
564
-
565
- # state transformation
566
- residual = hidden_states
567
- hidden_states = self.post_layernorm(hidden_states)
568
- hidden_states = self.feed_forward(hidden_states)
569
- hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
570
- hidden_states = self.post_residual(residual, hidden_states)
571
-
572
- outputs = (hidden_states,)
573
- if output_attentions:
574
- outputs += (self_attn_weights,)
575
-
576
- return outputs
577
-
578
-
579
- DOGE_START_DOCSTRING = r"""
580
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
581
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
582
- etc.)
583
-
584
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
585
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
586
- and behavior.
587
-
588
- Parameters:
589
- config ([`DogeConfig`]):
590
- Model configuration class with all the parameters of the model. Initializing with a config file does not
591
- load the weights associated with the model, only the configuration. Check out the
592
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
593
- """
594
- @add_start_docstrings(
595
- "The bare Doge Model outputting raw hidden-states without any specific head on top.",
596
- DOGE_START_DOCSTRING,
597
- )
598
- class DogePreTrainedModel(PreTrainedModel):
599
- config_class = DogeConfig
600
- base_model_prefix = "model"
601
- supports_gradient_checkpointing = True
602
- _no_split_modules = ["DogeDecoderLayer"]
603
- _skip_keys_device_placement = ["past_key_values"]
604
- _supports_sdpa = True
605
- # _supports_flex_attn = True
606
- _supports_cache_class = True
607
- _supports_quantized_cache = True
608
- _supports_static_cache = True
609
-
610
- def _init_weights(self, module):
611
- std = self.config.initializer_range
612
- if isinstance(module, (nn.Linear)):
613
- module.weight.data.normal_(mean=0.0, std=std)
614
- if module.bias is not None:
615
- module.bias.data.zero_()
616
- elif isinstance(module, nn.Embedding):
617
- module.weight.data.normal_(mean=0.0, std=std)
618
- if module.padding_idx is not None:
619
- module.weight.data[module.padding_idx].zero_()
620
-
621
-
622
- DOGE_INPUTS_DOCSTRING = r"""
623
- Args:
624
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
625
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
626
- it.
627
-
628
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
629
- [`PreTrainedTokenizer.__call__`] for details.
630
-
631
- [What are input IDs?](../glossary#input-ids)
632
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
633
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
634
-
635
- - 1 for tokens that are **not masked**,
636
- - 0 for tokens that are **masked**.
637
-
638
- [What are attention masks?](../glossary#attention-mask)
639
-
640
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
641
- [`PreTrainedTokenizer.__call__`] for details.
642
-
643
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
644
- `past_key_values`).
645
-
646
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
647
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
648
- information on the default strategy.
649
-
650
- - 1 indicates the head is **not masked**,
651
- - 0 indicates the head is **masked**.
652
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
653
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
654
- config.n_positions - 1]`.
655
-
656
- [What are position IDs?](../glossary#position-ids)
657
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
658
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
659
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
660
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
661
-
662
- Two formats are allowed:
663
- - a [`~cache_utils.Cache`] instance, see our
664
- [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
665
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
666
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
667
- cache format.
668
-
669
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
670
- legacy cache format will be returned.
671
-
672
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
673
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
674
- of shape `(batch_size, sequence_length)`.
675
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
676
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
677
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
678
- model's internal embedding lookup matrix.
679
- use_cache (`bool`, *optional*):
680
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
681
- `past_key_values`).
682
- output_attentions (`bool`, *optional*):
683
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
684
- tensors for more detail.
685
- output_hidden_states (`bool`, *optional*):
686
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
687
- more detail.
688
- return_dict (`bool`, *optional*):
689
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
690
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
691
- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
692
- this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
693
- the complete sequence length.
694
- """
695
-
696
-
697
- @add_start_docstrings(
698
- "The bare Doge Model outputting raw hidden-states without any specific head on top.",
699
- DOGE_START_DOCSTRING,
700
- )
701
- class DogeModel(DogePreTrainedModel):
702
- """
703
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`]
704
-
705
- Args:
706
- config: DogeConfig
707
- """
708
-
709
- def __init__(self, config: DogeConfig):
710
- super().__init__(config)
711
- self.config = config
712
- self.padding_idx = config.pad_token_id
713
- self.vocab_size = config.vocab_size
714
-
715
- self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
716
- self.rotary_emb = RotaryEmbedding(config)
717
- self.layers = nn.ModuleList(
718
- [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
719
- )
720
- self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
721
- self.gradient_checkpointing = False
722
-
723
- # Initialize weights and apply final processing
724
- self.post_init()
725
-
726
- def get_input_embeddings(self):
727
- return self.word_embed
728
-
729
- def set_input_embeddings(self, value):
730
- self.word_embed = value
731
-
732
- @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
733
- def forward(
734
- self,
735
- input_ids: torch.LongTensor = None,
736
- attention_mask: Optional[torch.Tensor] = None,
737
- position_ids: Optional[torch.LongTensor] = None,
738
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
739
- inputs_embeds: Optional[torch.FloatTensor] = None,
740
- use_cache: Optional[bool] = None,
741
- output_attentions: Optional[bool] = None,
742
- output_hidden_states: Optional[bool] = None,
743
- return_dict: Optional[bool] = None,
744
- cache_position: Optional[torch.LongTensor] = None,
745
- **kwargs,
746
- ) -> Union[Tuple, BaseModelOutputWithPast]:
747
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
748
- output_hidden_states = (
749
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
750
- )
751
- use_cache = use_cache if use_cache is not None else self.config.use_cache
752
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
753
-
754
- if (input_ids is None) ^ (inputs_embeds is not None):
755
- raise ValueError("You cannot specify both input_ids and inputs_embeds")
756
-
757
- if self.gradient_checkpointing and self.training and use_cache:
758
- logger.warning_once(
759
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
760
- )
761
- use_cache = False
762
-
763
- if inputs_embeds is None:
764
- inputs_embeds = self.word_embed(input_ids)
765
-
766
- if use_cache and past_key_values is None:
767
- past_key_values = DynamicCache()
768
-
769
- if cache_position is None:
770
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
771
- cache_position = torch.arange(
772
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
773
- )
774
-
775
- if position_ids is None:
776
- position_ids = cache_position.unsqueeze(0)
777
-
778
- causal_mask = self._update_causal_mask(
779
- attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
780
- )
781
-
782
- hidden_states = inputs_embeds
783
-
784
- # create position embeddings to be shared across the decoder layers
785
- position_embeddings = self.rotary_emb(hidden_states, position_ids)
786
-
787
- # decoder layers
788
- all_hidden_states = () if output_hidden_states else None
789
- all_self_attns = () if output_attentions else None
790
-
791
- for decoder_layer in self.layers[: self.config.num_hidden_layers]:
792
- if output_hidden_states:
793
- all_hidden_states += (hidden_states,)
794
-
795
- if self.gradient_checkpointing and self.training:
796
- layer_outputs = self._gradient_checkpointing_func(
797
- decoder_layer.__call__,
798
- hidden_states,
799
- causal_mask,
800
- position_ids,
801
- past_key_values,
802
- output_attentions,
803
- use_cache,
804
- cache_position,
805
- position_embeddings,
806
- )
807
- else:
808
- layer_outputs = decoder_layer(
809
- hidden_states,
810
- attention_mask=causal_mask,
811
- position_ids=position_ids,
812
- past_key_value=past_key_values,
813
- output_attentions=output_attentions,
814
- use_cache=use_cache,
815
- cache_position=cache_position,
816
- position_embeddings=position_embeddings,
817
- **kwargs,
818
- )
819
-
820
- hidden_states = layer_outputs[0]
821
-
822
- if output_attentions:
823
- all_self_attns += (layer_outputs[1],)
824
-
825
- hidden_states = self.final_layernorm(hidden_states)
826
-
827
- # add hidden states from the last decoder layer
828
- if output_hidden_states:
829
- all_hidden_states += (hidden_states,)
830
-
831
- output = BaseModelOutputWithPast(
832
- last_hidden_state=hidden_states,
833
- past_key_values=past_key_values if use_cache else None,
834
- hidden_states=all_hidden_states,
835
- attentions=all_self_attns,
836
- )
837
- return output if return_dict else output.to_tuple()
838
-
839
- def _update_causal_mask(
840
- self,
841
- attention_mask: torch.Tensor,
842
- input_tensor: torch.Tensor,
843
- cache_position: torch.Tensor,
844
- past_key_values: Cache,
845
- output_attentions: bool,
846
- ):
847
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
848
- using_static_cache = isinstance(past_key_values, StaticCache)
849
-
850
- dtype, device = input_tensor.dtype, input_tensor.device
851
- sequence_length = input_tensor.shape[1]
852
- if using_static_cache:
853
- target_length = past_key_values.get_max_cache_shape()
854
- else:
855
- target_length = (
856
- attention_mask.shape[-1]
857
- if isinstance(attention_mask, torch.Tensor)
858
- else past_seen_tokens + sequence_length + 1
859
- )
860
-
861
- # in case the provided `attention` mask is 2D, we generate a causal mask here (4D).
862
- causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
863
- attention_mask=attention_mask,
864
- sequence_length=sequence_length,
865
- target_length=target_length,
866
- dtype=dtype,
867
- device=device,
868
- cache_position=cache_position,
869
- batch_size=input_tensor.shape[0],
870
- )
871
-
872
- return causal_mask
873
-
874
- @staticmethod
875
- def _prepare_4d_causal_attention_mask_with_cache_position(
876
- attention_mask: torch.Tensor = None,
877
- sequence_length: int = None,
878
- target_length: int = None,
879
- dtype: torch.dtype = None,
880
- device: torch.device = None,
881
- cache_position: torch.Tensor = None,
882
- batch_size: int = None,
883
- **kwargs,
884
- ):
885
- """
886
- Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
887
- `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
888
-
889
- Args:
890
- attention_mask (`torch.Tensor`):
891
- A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
892
- `(batch_size, 1, query_length, key_value_length)`.
893
- sequence_length (`int`):
894
- The sequence length being processed.
895
- target_length (`int`):
896
- The target length: when generating with static cache, the mask should be as long as the static cache,
897
- to account for the 0 padding, the part of the cache that is not filled yet.
898
- dtype (`torch.dtype`):
899
- The dtype to use for the 4D attention mask.
900
- device (`torch.device`):
901
- The device to plcae the 4D attention mask on.
902
- cache_position (`torch.Tensor`):
903
- Indices depicting the position of the input sequence tokens in the sequence.
904
- batch_size (`torch.Tensor`):
905
- Batch size.
906
- """
907
- if attention_mask is not None and attention_mask.dim() == 4:
908
- # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
909
- causal_mask = attention_mask
910
- else:
911
- min_dtype = torch.finfo(dtype).min
912
- causal_mask = torch.full(
913
- (sequence_length, target_length),
914
- fill_value=min_dtype, dtype=dtype, device=device,
915
- )
916
- if sequence_length != 1:
917
- causal_mask = torch.triu(causal_mask, diagonal=1)
918
- causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
919
- causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
920
- if attention_mask is not None:
921
- causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
922
- mask_length = attention_mask.shape[-1]
923
- padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
924
- padding_mask = padding_mask == 0
925
- causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
926
- padding_mask, min_dtype
927
- )
928
-
929
- return causal_mask
930
-
931
-
932
- class KwargsForCausalLM(LossKwargs): ...
933
-
934
-
935
- class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
936
- _tied_weights_keys = ["lm_head.weight"]
937
- _tp_plan = {"lm_head": "colwise_rep"}
938
-
939
- def __init__(self, config: DogeConfig):
940
- super().__init__(config)
941
- self.config = config
942
- self.model = DogeModel(config)
943
- self.vocab_size = config.vocab_size
944
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
945
-
946
- # Initialize weights and apply final processing
947
- self.post_init()
948
-
949
- def get_input_embeddings(self):
950
- return self.model.word_embed
951
-
952
- def set_input_embeddings(self, value):
953
- self.model.word_embed = value
954
-
955
- def get_output_embeddings(self):
956
- return self.lm_head
957
-
958
- def set_output_embeddings(self, new_embeddings):
959
- self.lm_head = new_embeddings
960
-
961
- def get_decoder(self):
962
- return self.model
963
-
964
- def set_decoder(self, decoder):
965
- self.model = decoder
966
-
967
- @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
968
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
969
- def forward(
970
- self,
971
- input_ids: torch.LongTensor = None,
972
- attention_mask: Optional[torch.Tensor] = None,
973
- position_ids: Optional[torch.LongTensor] = None,
974
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
975
- inputs_embeds: Optional[torch.FloatTensor] = None,
976
- labels: Optional[torch.LongTensor] = None,
977
- use_cache: Optional[bool] = None,
978
- output_attentions: Optional[bool] = None,
979
- output_hidden_states: Optional[bool] = None,
980
- return_dict: Optional[bool] = None,
981
- cache_position: Optional[torch.LongTensor] = None,
982
- num_logits_to_keep: int = 0,
983
- **kwargs: Unpack[KwargsForCausalLM],
984
- ) -> Union[Tuple, CausalLMOutputWithPast]:
985
- r"""
986
- Args:
987
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
988
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
989
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
990
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
991
-
992
- num_logits_to_keep (`int`, *optional*):
993
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
994
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
995
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
996
-
997
- Returns:
998
-
999
- Example:
1000
-
1001
- ```python
1002
- >>> from transformers import AutoTokenizer, AutoModelForCausalLM
1003
-
1004
- >>> model = AutoModelForCausalLM.from_pretrained("JingzeShi/Doge-20M-Instruct")
1005
- >>> tokenizer = AutoTokenizer.from_pretrained("JingzeShi/Doge-20M-Instruct")
1006
-
1007
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1008
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1009
-
1010
- >>> # Generate
1011
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1012
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1013
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1014
- ```"""
1015
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1016
- output_hidden_states = (
1017
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1018
- )
1019
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1020
-
1021
- # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn)
1022
- outputs = self.model(
1023
- input_ids=input_ids,
1024
- attention_mask=attention_mask,
1025
- position_ids=position_ids,
1026
- past_key_values=past_key_values,
1027
- inputs_embeds=inputs_embeds,
1028
- use_cache=use_cache,
1029
- output_attentions=output_attentions,
1030
- output_hidden_states=output_hidden_states,
1031
- return_dict=return_dict,
1032
- cache_position=cache_position,
1033
- **kwargs,
1034
- )
1035
-
1036
- hidden_states = outputs[0]
1037
-
1038
- # only compute necessary logits, and do not upcast them to float if we are not computing the loss
1039
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1040
-
1041
- loss = None
1042
- if labels is not None:
1043
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs)
1044
-
1045
- if not return_dict:
1046
- output = (logits,) + outputs[1:]
1047
- return (loss,) + output if loss is not None else output
1048
-
1049
- return CausalLMOutputWithPast(
1050
- loss=loss,
1051
- logits=logits,
1052
- past_key_values=outputs.past_key_values,
1053
- hidden_states=outputs.hidden_states,
1054
- attentions=outputs.attentions,
1055
- )
1056
-
1057
-
1058
- class DogePatchEmbedding(nn.Module):
1059
- """
1060
- This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` of shape `(batch_size, seq_len, hidden_size)` to be consumed by a Transformer.
1061
- """
1062
-
1063
- def __init__(self, config: DogeConfig):
1064
- super().__init__()
1065
-
1066
- self.num_channels = config.num_channels
1067
- self.patch_size = config.patch_size
1068
- self.hidden_dim = config.hidden_size
1069
-
1070
- self.sequence_proj = nn.Conv2d(self.num_channels, self.hidden_dim, kernel_size=self.patch_size, stride=self.patch_size)
1071
- self.state_proj = nn.Linear(self.hidden_dim, self.hidden_dim, bias=config.hidden_bias)
1072
-
1073
- def forward(
1074
- self,
1075
- pixel_values: torch.Tensor,
1076
- ) -> torch.Tensor:
1077
- image_embedding = self.sequence_proj(pixel_values).flatten(2).transpose(1, 2)
1078
- image_embedding = self.state_proj(image_embedding)
1079
- return image_embedding
1080
-
1081
-
1082
- class DogeForCausalVLM(DogeForCausalLM):
1083
- _tied_weights_keys = ["lm_head.weight"]
1084
-
1085
- def __init__(self, config: DogeConfig):
1086
- super().__init__(config)
1087
- self.config = config
1088
- self.pixel_embed = DogePatchEmbedding(config)
1089
-
1090
- # Initialize weights and apply final processing
1091
- self.post_init()
1092
-
1093
- def forward(
1094
- self,
1095
- input_ids: torch.LongTensor = None,
1096
- pixel_values: torch.FloatTensor = None,
1097
- attention_mask: Optional[torch.Tensor] = None,
1098
- position_ids: Optional[torch.LongTensor] = None,
1099
- past_key_values: Optional[torch.Tensor] = None,
1100
- inputs_embeds: Optional[torch.FloatTensor] = None,
1101
- labels: Optional[torch.LongTensor] = None,
1102
- use_cache: Optional[bool] = None,
1103
- output_attentions: Optional[bool] = None,
1104
- output_hidden_states: Optional[bool] = None,
1105
- return_dict: Optional[bool] = None,
1106
- cache_position: Optional[torch.LongTensor] = None,
1107
- num_logits_to_keep: int = 0,
1108
- **loss_kwargs,
1109
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1110
- # TODO: @wubingheng111: refer to Llava for implementating the forward method
1111
- ...
1112
-
1113
- def prepare_inputs_for_generation(
1114
- self,
1115
- input_ids=None,
1116
- pixel_values=None,
1117
- past_key_values=None,
1118
- input_embeds=None,
1119
- attention_mask=None,
1120
- cache_position=None,
1121
- num_logits_to_keep=None,
1122
- **kwargs,
1123
- ):
1124
- model_inputs = self.model.prepare_inputs_for_generation(
1125
- input_ids,
1126
- past_key_values=past_key_values,
1127
- inputs_embeds=input_embeds,
1128
- attention_mask=attention_mask,
1129
- cache_position=cache_position,
1130
- num_logits_to_keep=num_logits_to_keep,
1131
- **kwargs,
1132
- )
1133
-
1134
- if cache_position[0] == 0:
1135
- model_inputs["pixel_values"] = pixel_values
1136
-
1137
- return model_inputs
1138
-
1139
-
1140
- @add_start_docstrings(
1141
- """
1142
- The Doge Model transformer with a sequence classification head on top (linear layer).
1143
-
1144
- [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
1145
-
1146
- Since it does classification on the last token, it requires to know the position of the last token.
1147
- If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
1148
- If no `pad_token_id` is defined, it simply takes the last value in each row of the batch.
1149
- Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch).
1150
- """
1151
- )
1152
- class DogeForSequenceClassification(DogePreTrainedModel):
1153
- def __init__(self, config: DogeConfig):
1154
- super().__init__(config)
1155
- self.config = config
1156
- self.num_labels = config.num_labels
1157
-
1158
- self.model = DogeModel(config)
1159
- self.classifier = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1160
-
1161
- # Initialize weights and apply final processing
1162
- self.init_weights()
1163
-
1164
- def get_input_embeddings(self):
1165
- return self.model.word_embed
1166
-
1167
- def set_input_embeddings(self, value):
1168
- self.model.word_embed = value
1169
-
1170
- @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
1171
- def forward(
1172
- self,
1173
- input_ids: Optional[torch.LongTensor] = None,
1174
- attention_mask: Optional[torch.Tensor] = None,
1175
- position_ids: Optional[torch.LongTensor] = None,
1176
- past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1177
- inputs_embeds: Optional[torch.FloatTensor] = None,
1178
- labels: Optional[torch.LongTensor] = None,
1179
- use_cache: Optional[bool] = None,
1180
- output_attentions: Optional[bool] = None,
1181
- output_hidden_states: Optional[bool] = None,
1182
- return_dict: Optional[bool] = None,
1183
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1184
- r"""
1185
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1186
- Labels for computing the sequence classification/regression loss.
1187
- Indices should be in `[0, ..., config.num_labels - 1]`.
1188
- If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1189
- """
1190
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1191
-
1192
- outputs = self.model(
1193
- input_ids=input_ids,
1194
- attention_mask=attention_mask,
1195
- position_ids=position_ids,
1196
- past_key_values=past_key_values,
1197
- inputs_embeds=inputs_embeds,
1198
- use_cache=use_cache,
1199
- output_attentions=output_attentions,
1200
- output_hidden_states=output_hidden_states,
1201
- return_dict=return_dict,
1202
- )
1203
- hidden_states = outputs[0]
1204
- logits = self.classifier(hidden_states)
1205
-
1206
- if input_ids is not None:
1207
- batch_size = input_ids.shape[0]
1208
- else:
1209
- batch_size = inputs_embeds.shape[0]
1210
-
1211
- if self.config.pad_token_id is None and batch_size != 1:
1212
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1213
- if self.config.pad_token_id is None:
1214
- sequence_lengths = -1
1215
- else:
1216
- if input_ids is not None:
1217
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1218
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1219
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1220
- sequence_lengths = sequence_lengths.to(logits.device)
1221
- else:
1222
- sequence_lengths = -1
1223
-
1224
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1225
-
1226
- loss = None
1227
- if labels is not None:
1228
- loss = self.loss_function(
1229
- logits=logits,
1230
- labels=labels,
1231
- pooled_logits=pooled_logits,
1232
- config=self.config,
1233
- )
1234
-
1235
- if not return_dict:
1236
- output = (pooled_logits,) + outputs[1:]
1237
- return ((loss,) + output) if loss is not None else output
1238
-
1239
- return SequenceClassifierOutputWithPast(
1240
- loss=loss,
1241
- logits=pooled_logits,
1242
- past_key_values=outputs.past_key_values,
1243
- hidden_states=outputs.hidden_states,
1244
- attentions=outputs.attentions,
1245
- )
1246
-
1247
- __all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]