SlowPacer's picture
Update handler.py
a775b25
raw
history blame
1.93 kB
from typing import Dict, List, Any
from PIL import Image
import base64
import torch
import os
from io import BytesIO
from transformers import BlipForConditionalGeneration, BlipProcessor
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
self.model.eval()
self.model = self.model.to(device)
def __call__(self, data: Any) -> Dict[str, Any]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
- "caption": A string corresponding to the generated caption.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", {})
print(inputs)
if isinstance(inputs, Image.Image):
raw_images = [inputs]
else:
inputs = isinstance(inputs, str) and [inputs] or inputs
raw_images = [Image.open(BytesIO(base64.b64decode(_img))) for _img in inputs]
processed_images = self.processor(images=raw_images, return_tensors="pt")
processed_images["pixel_values"] = processed_images["pixel_values"].to(device)
processed_images = {**processed_images, **parameters}
with torch.no_grad():
out = self.model.generate(**processed_images)
captions = self.processor.batch_decode(out, skip_special_tokens=True)
return {"captions": captions}