falcon-mini-ggml / falcon-convert.py
Skiro's picture
Upload falcon-convert.py
2c6103b
# Convert Hugging Face falcon models to ggml format
#
# Usage:
#
# python3 falcon-convert.py 2 ~/huggingface/models/falcon-7b-instruct ./models/falcon-7b-ggmlv3-f16.bin
#
# This script is similar to "convert-pt-to-ggml.py"
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
GGML_MEM_ALIGN = 32
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 4:
print("Usage: python3 falcon.py num_parts model_name output [use-f32]")
print(" num_parts: number of pytorch parts, use 0 if not a multipart model. example: 2")
print(" model_name: name of the model to convert.")
print(" output: the output file path will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)
num_parts = int(sys.argv[1])
model_name = sys.argv[2]
output = sys.argv[3]
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 4:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
print("* Loading model from: ", model_name)
fout = open(output, "wb")
# magic
fout.write(b"ggjt"[::-1])
# config
n_vocab = hparams["vocab_size"]
n_embd = hparams["hidden_size"]
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
n_layer = hparams["n_layer"]
head_dim = n_embd // n_head
config_values = [
3,
n_vocab,
n_embd,
n_head,
n_head_kv,
n_layer,
ftype
]
fout.write(struct.pack("i" * len(config_values), *config_values))
# vocab
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
for i in range(hparams["vocab_size"]):
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
fout.write(struct.pack("i", len(text)))
fout.write(text)
# score
fout.write(struct.pack('f', 0.0))
# tensor
if num_parts == 0:
partnames= ('pytorch_model.bin',)
else:
partnames = (f'pytorch_model-{n:05}-of-{num_parts:05}.bin' for n in range(1, num_parts + 1))
for partname in partnames:
filename = f'{model_name}/{partname}'
print(f'\n* Loading part: {partname}')
model = torch.load(filename, map_location = 'cpu')
for name in model.keys():
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
if "query_key_value" in name:
qkv = model[name].view(
n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
model[name] = torch.cat((q,k,v)).reshape_as(model[name])
tensor = model[name]
# default type is fp32
ftype_cur = 1 if ftype == 1 and tensor.ndim > 1 else 0
print(f' |', name, tensor.shape, '->', tensor.dtype)
# header
sname = name.encode('utf-8')
fout.write(struct.pack("i" * 3, tensor.ndim, len(sname), ftype_cur))
fout.write(struct.pack("i" * tensor.ndim, *tensor.shape[::-1]))
fout.write(sname)
# save to file
aligned_pos = (fout.tell() + (GGML_MEM_ALIGN - 1)) & -GGML_MEM_ALIGN
fout.seek(aligned_pos)
tensor.to(dtype = torch.float16 if ftype_cur == 1 else torch.float32).numpy().tofile(fout)
fout.close()
print("GGML model file saved to " + output)
print("")