HyperReel-V1-B / train.py
SkillForge45's picture
Create train.py
813ea14 verified
raw
history blame contribute delete
818 Bytes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet3D().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for epoch in range(250):
for batch in tqdm(dataloader):
video = batch["video"].to(device)
text = batch["text"].to(device)
t = torch.randint(0, 1000, (video.shape[0], 1)).to(device)
noise = torch.randn_like(video)
alpha_t = (1 - t/1000).view(-1, 1, 1, 1, 1)
noisy_video = torch.sqrt(alpha_t) * video + torch.sqrt(1 - alpha_t) * noise
pred_noise = model(noisy_video, t/1000, text)
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")