Skikepok commited on
Commit
c481f4c
·
1 Parent(s): c4779c6

LR Schedule

Browse files
3_best-ppo-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66d2eec2083b08523e9b9bb5f7ddbbf97bf9239d95937fafc45c216f671f6ed
3
+ size 147229
3_best-ppo-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
3_best-ppo-LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70a2af43a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70a2af4430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70a2af44c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70a2af4550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f70a2af45e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f70a2af4670>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70a2af4700>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f70a2af4790>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70a2af4820>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70a2af48b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70a2af4940>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f70a2aeba20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673359954032143612,
51
+ "learning_rate": 1e-05,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJovmzw41t27KIuPO+YTkzwUwES9VVt3PQAAgD8AAIA/puX0PYTpWD6C6zS+1NbfvvcHlTzysHG9AAAAAAAAAADNpP27YXXbPXazcT0tVOi+EMMvPQgzI70AAAAAAAAAAJr117spdHK62ZgPPK5tk7vwsaO70meGvAAAgD8AAIA/Zj89PcSMyz4DlIo8uMAFv5ZTHj3M2MY8AAAAAAAAAAB63Qe+4+0vP7In7bze9ia/ORqBvlWNBT4AAAAAAAAAAAAfCb7+ZWo/QJKvvT6LIb9CHY2+uqbIvAAAAAAAAAAABhDDPrrVrr2TawQ8HKNAPBlkJr4+NUe7AACAPwAAgD8zp3U9D4mQP0YFKz4hNim/IQ3iPRPQdj0AAAAAAAAAAHNSlz0B6/A+8o4MvqPnA7/7s8W8iIPHvAAAAAAAAAAAzaRJOwqXNLmpopc56fF8tynHmzsuZ7G4AACAPwAAgD+aOcA7dka1P6kaGD/h23A+bYPeu8XQCb4AAAAAAAAAAAD4A7wboea8tYyVvKI01L1hJbk9eZPIPgAAgD8AAIA/wsyJvnOjJz873Sg+IBwYv/wR0L5T+aE+AAAAAAAAAADzN4K9bXGSP73TdL4O8SK/X4gSvhgT9L0AAAAAAAAAAIAkE70cXDK8fT13PIoiNj3/3mc81pWYugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+tAF9a20b0CUhpRSlIwBbJRLvIwBdJRHQHhiVHJ9y951fZQoaAZoCWgPQwgnLscr0FlxQJSGlFKUaBVNCwFoFkdAeGKm9QGfPHV9lChoBmgJaA9DCKInZVLDd3JAlIaUUpRoFUuyaBZHQHhkoPCl7+l1fZQoaAZoCWgPQwiHGoUk89pxQJSGlFKUaBVLt2gWR0B4ZthnanJldX2UKGgGaAloD0MIAFMGDiiKcUCUhpRSlGgVS/BoFkdAeGc15Sm65HV9lChoBmgJaA9DCA/uztotg3FAlIaUUpRoFU1wAWgWR0B4aSAc1fmcdX2UKGgGaAloD0MIYyXmWUnBcUCUhpRSlGgVS9doFkdAeGqMWGh24nV9lChoBmgJaA9DCNVcbjDUjnBAlIaUUpRoFUu+aBZHQHhrySidrft1fZQoaAZoCWgPQwgNjpJXZ+ZvQJSGlFKUaBVLxGgWR0B4bIbrC3w1dX2UKGgGaAloD0MIowc+BmvXckCUhpRSlGgVS9RoFkdAeG5J/G2kSHV9lChoBmgJaA9DCBmqYir9m3JAlIaUUpRoFUvLaBZHQHhwsoDxLCh1fZQoaAZoCWgPQwhPQBNhg0xzQJSGlFKUaBVL7WgWR0B4cV5jYqXodX2UKGgGaAloD0MIbNCX3n69ckCUhpRSlGgVTeoBaBZHQHhyhzvJA+p1fZQoaAZoCWgPQwgxfERMCW9xQJSGlFKUaBVLqmgWR0B4dNzo2XLNdX2UKGgGaAloD0MIotPzbiw0b0CUhpRSlGgVS/loFkdAeHd5ksjFAHV9lChoBmgJaA9DCLyS5Ll+3nFAlIaUUpRoFUvjaBZHQHh4FAiV0Ld1fZQoaAZoCWgPQwgAcy1agJVxQJSGlFKUaBVLx2gWR0B4eSh4+r2hdX2UKGgGaAloD0MIHozYJ0BickCUhpRSlGgVS8doFkdAeHuHDJlrdnV9lChoBmgJaA9DCHLBGfx9HHBAlIaUUpRoFUvLaBZHQHh+lLBbfP51fZQoaAZoCWgPQwgyIlFomSxzQJSGlFKUaBVL+GgWR0B4fyOdXko4dX2UKGgGaAloD0MItFpgj0kwc0CUhpRSlGgVS9doFkdAeH+Up/gBLnV9lChoBmgJaA9DCHRDU3b6c3BAlIaUUpRoFUvNaBZHQHiA2U0Nz8x1fZQoaAZoCWgPQwim0HmN3YJyQJSGlFKUaBVLvGgWR0B4gkouwosqdX2UKGgGaAloD0MI0opvKPxScUCUhpRSlGgVS+RoFkdAeIS1B+nZTXV9lChoBmgJaA9DCGuCqPuAYHJAlIaUUpRoFUvbaBZHQHiE0ZNwiq11fZQoaAZoCWgPQwhLrIxGvr5wQJSGlFKUaBVLt2gWR0B4heEug6EKdX2UKGgGaAloD0MIDCHn/T8ZcUCUhpRSlGgVS7VoFkdAeIZRcNYr8XV9lChoBmgJaA9DCOMcdXRcuFBAlIaUUpRoFUt+aBZHQHiGfzreImB1fZQoaAZoCWgPQwjQfM7dLplwQJSGlFKUaBVL42gWR0B46EkKNQ0odX2UKGgGaAloD0MINxlVhnHYc0CUhpRSlGgVS9BoFkdAeOnsFdLQHHV9lChoBmgJaA9DCCl64GMwYHJAlIaUUpRoFUvkaBZHQHjuTh5xBE91fZQoaAZoCWgPQwiB7PXuzyt0QJSGlFKUaBVLxGgWR0B48TSofjjrdX2UKGgGaAloD0MIsYhhhzGdb0CUhpRSlGgVS+poFkdAePFu4gA6uHV9lChoBmgJaA9DCBd/2xPkh3BAlIaUUpRoFUu8aBZHQHj0ab4Ju2t1fZQoaAZoCWgPQwgkl/+Q/t9zQJSGlFKUaBVLx2gWR0B49KCAc1fmdX2UKGgGaAloD0MIUb8LW/M0cECUhpRSlGgVS81oFkdAePWwhnrY5HV9lChoBmgJaA9DCKfs9IM69nFAlIaUUpRoFUvCaBZHQHj2NuxbB451fZQoaAZoCWgPQwgP7s7a7eduQJSGlFKUaBVNFQFoFkdAePgLApKBd3V9lChoBmgJaA9DCKa3PxeNsHFAlIaUUpRoFUvRaBZHQHj5Dk+5e7d1fZQoaAZoCWgPQwgZ5ZmXAzVzQJSGlFKUaBVLvmgWR0B4+W6vq1PWdX2UKGgGaAloD0MIYCAIkCGZckCUhpRSlGgVS99oFkdAeP0sY2sJY3V9lChoBmgJaA9DCPj/ccKEw0hAlIaUUpRoFUuKaBZHQHj+C8SPEKp1fZQoaAZoCWgPQwhrYKsEy4FxQJSGlFKUaBVL3mgWR0B4/xOO801qdX2UKGgGaAloD0MIvajdr0IIc0CUhpRSlGgVS+JoFkdAeP9E4Nqgy3V9lChoBmgJaA9DCDVFgNP76HBAlIaUUpRoFUvXaBZHQHkAB/ViF0x1fZQoaAZoCWgPQwiNe/MbptdzQJSGlFKUaBVL22gWR0B5AnXAdn01dX2UKGgGaAloD0MI31D4bF0CcUCUhpRSlGgVS7poFkdAeQulgtvn83V9lChoBmgJaA9DCPkUAONZAXNAlIaUUpRoFUvlaBZHQHkL6SxJNCZ1fZQoaAZoCWgPQwjs3R/vlRtwQJSGlFKUaBVL1mgWR0B5DVw71ZkkdX2UKGgGaAloD0MIV7Wko5xkckCUhpRSlGgVS8FoFkdAeQ8JoCdSVHV9lChoBmgJaA9DCA3jbhDtRHJAlIaUUpRoFUvAaBZHQHkQ8wxnFpB1fZQoaAZoCWgPQwiP3nAfuTVzQJSGlFKUaBVL5GgWR0B5ERL/S6UadX2UKGgGaAloD0MIAi1dwTbIc0CUhpRSlGgVS+9oFkdAeREZzgdfcHV9lChoBmgJaA9DCOs7vyiBEXJAlIaUUpRoFUvNaBZHQHkR99hJAdJ1fZQoaAZoCWgPQwicps8O+F1yQJSGlFKUaBVNMgFoFkdAeRXVObiIcnV9lChoBmgJaA9DCOfG9IRlqnJAlIaUUpRoFUvTaBZHQHkXT3RG+bp1fZQoaAZoCWgPQwggRgiP9rxxQJSGlFKUaBVLzmgWR0B5GKksSTQmdX2UKGgGaAloD0MItRX7y67lckCUhpRSlGgVS8NoFkdAeRsKT0QK8nV9lChoBmgJaA9DCGxB742hlXJAlIaUUpRoFUv2aBZHQHkcYe5nUUh1fZQoaAZoCWgPQwiK6NfWT9xuQJSGlFKUaBVNBAFoFkdAeSBi1AqusHV9lChoBmgJaA9DCNnpB3VRBXNAlIaUUpRoFUuvaBZHQHkh56Y3Ns51fZQoaAZoCWgPQwhkXHFxVAVwQJSGlFKUaBVLwmgWR0B5JbWK/EfldX2UKGgGaAloD0MI/3Vu2kxpcUCUhpRSlGgVS85oFkdAeSXxgAp8W3V9lChoBmgJaA9DCEOu1LOgim9AlIaUUpRoFUvAaBZHQHko25UcXFd1fZQoaAZoCWgPQwiHiQYp+JdzQJSGlFKUaBVLyGgWR0B5Kcw1zhgmdX2UKGgGaAloD0MILbRzmoVgckCUhpRSlGgVS7FoFkdAeSwJuVHFxXV9lChoBmgJaA9DCJhsPNiilnNAlIaUUpRoFUvpaBZHQHksaHKwIMV1fZQoaAZoCWgPQwiEoKNVLehuQJSGlFKUaBVL4mgWR0B5LnzVc2R8dX2UKGgGaAloD0MIqrpHNlcCckCUhpRSlGgVS/doFkdAeTBUNayKN3V9lChoBmgJaA9DCHHmV3NAvHNAlIaUUpRoFUu6aBZHQHkwi+QEIPd1fZQoaAZoCWgPQwgsfeiC+o5wQJSGlFKUaBVL02gWR0B5MhgWrOqvdX2UKGgGaAloD0MI3uhjPiAoK0CUhpRSlGgVS2VoFkdAeTNHd43WF3V9lChoBmgJaA9DCCOgwhFkYHJAlIaUUpRoFUvoaBZHQHk4sQumJnB1fZQoaAZoCWgPQwj/JalMMZhvQJSGlFKUaBVLwGgWR0B5OQ3wTdtVdX2UKGgGaAloD0MIL6aZ7nV4cUCUhpRSlGgVS+VoFkdAeTnMSK3uu3V9lChoBmgJaA9DCJrrNNLSM3BAlIaUUpRoFUvEaBZHQHk7I1P3ztl1fZQoaAZoCWgPQwiXVG03wclNQJSGlFKUaBVLn2gWR0B5QMeDFqBVdX2UKGgGaAloD0MIgy9MpgrqQkCUhpRSlGgVS39oFkdAeUDs8xKxs3V9lChoBmgJaA9DCGH/dW5a2XFAlIaUUpRoFUvYaBZHQHlCET101ZV1fZQoaAZoCWgPQwjwbmWJDnpwQJSGlFKUaBVLyWgWR0B5Q23z+WGAdX2UKGgGaAloD0MIob5lTpdlDkCUhpRSlGgVS11oFkdAeUUac7Qsw3V9lChoBmgJaA9DCPPIHwz8OnFAlIaUUpRoFUvQaBZHQHlFWQGOdXl1fZQoaAZoCWgPQwjfcB+59TVxQJSGlFKUaBVLzmgWR0B5R1d6cAindX2UKGgGaAloD0MIt17Tg8LjcECUhpRSlGgVS7loFkdAeUhMewLVnXV9lChoBmgJaA9DCMKE0awsOXFAlIaUUpRoFUvGaBZHQHlIaUaAFxJ1fZQoaAZoCWgPQwhrm+JxUTBxQJSGlFKUaBVL3WgWR0B5TqxTsIE9dX2UKGgGaAloD0MI5e5zfPT5cUCUhpRSlGgVS+xoFkdAeVIbx3FDOXV9lChoBmgJaA9DCDifOlYpWm9AlIaUUpRoFUvOaBZHQHlVEBfa6Bl1fZQoaAZoCWgPQwjWpxyTRQBzQJSGlFKUaBVL1GgWR0B5V3p6hQFcdX2UKGgGaAloD0MIDmWoiqkBckCUhpRSlGgVS69oFkdAeVhFgDzRQnV9lChoBmgJaA9DCDFD44mg1m5AlIaUUpRoFUu5aBZHQHla9rXUYsN1fZQoaAZoCWgPQwgY6xuY3ONvQJSGlFKUaBVL/GgWR0B5WwHpr1ujdX2UKGgGaAloD0MIdhvUfus2cUCUhpRSlGgVS69oFkdAeV0XlbNbDHV9lChoBmgJaA9DCMvVj01yKHNAlIaUUpRoFUvWaBZHQHleC/XXiBJ1fZQoaAZoCWgPQwjpCyHn/axxQJSGlFKUaBVLtmgWR0B5YH/vOQhfdX2UKGgGaAloD0MIrW71nLRkcUCUhpRSlGgVS+JoFkdAeWJHk92X9nV9lChoBmgJaA9DCO6W5IDdwmVAlIaUUpRoFU3oA2gWR0B5YzDFZPl/dX2UKGgGaAloD0MIKLUX0fa9cUCUhpRSlGgVS+toFkdAeWVtaIN3GHV9lChoBmgJaA9DCA6GOqzwpnJAlIaUUpRoFUvcaBZHQHlmjT8YQ8R1fZQoaAZoCWgPQwjdCmE1lsJFwJSGlFKUaBVLW2gWR0B5aUIhQm/ndWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1476,
79
+ "n_steps": 1024,
80
+ "gamma": 0.9999,
81
+ "gae_lambda": 0.99,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
3_best-ppo-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed59efa65e85de2132f2c4d45e43e39b398488c7e8cc55bc1d8301a723f6ee94
3
+ size 88057
3_best-ppo-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c80c903d8cb142343b888df34c905814817410b0309e152578c67fbe6bb228a3
3
+ size 43201
3_best-ppo-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
3_best-ppo-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 289.89 +/- 14.27
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 286.58 +/- 19.82
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70a2af43a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70a2af4430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70a2af44c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70a2af4550>", "_build": "<function ActorCriticPolicy._build at 0x7f70a2af45e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f70a2af4670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70a2af4700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70a2af4790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70a2af4820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70a2af48b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70a2af4940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70a2aeba20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673357277968040495, "learning_rate": 1e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZfNr2u0Za6w2Oetrc5drGxvqC642C2NQAAgD8AAIA/RiYDvgtthz5+wFI+Q8PLvrwiBz02UI68AAAAAAAAAAAAdNg7e9aKuo2WXbP53QgvIx+SOrZ5uDMAAIA/AACAPzPfWjyuK526HlQavEx2kDxRu/q6UEd7vQAAgD8AAIA/zdVoPbeuij4SRA2+XinIvodvcrxP+Qi8AAAAAAAAAADNrBI7w7lFusIeODypzRE8hw6Wu9Dx/rwAAIA/AACAP2b6tryF7LW7UQsFvJ2fejwYEw49Wy1avQAAgD8AAIA/5iyOvVSMsLwlnTI9F/o4vSaRaLy7ny29AACAPwAAgD+Nb8c97LjouxYulrwxfpg8pBdEvRpFfj0AAAAAAACAP2b1bT3Yxpo9C6WZvu0fv76HJfK9W2pDvQAAAAAAAAAAmsONPHGYVrs9gKC7BI+MPDXRkLzmu3E9AACAPwAAgD9mhim6rl+lvBvQLLxiv8a8axBmvB6OQ7wAAIA/AACAPxp/M72uv4G6svcYNnPoODHwPxe7LtVDtQAAgD8AAIA/2ttQvi1qZT/oFF2+NRkDv2qa/r7WiQ++AAAAAAAAAAC9xVG+U6I5P9JSwT18rwi/+tbEvgymED4AAAAAAAAAAAZ2D76pybg/CLoLvy9yb77NLU6+pbvJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVzwoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICeBm8SJYcECUhpRSlIwBbJRLtIwBdJRHP/FW0Z3s5XF1fZQoaAZoCWgPQwiCH9WwXz5yQJSGlFKUaBVLvGgWRz/yjfm9xp+MdX2UKGgGaAloD0MIJnLBGfwgcUCUhpRSlGgVS75oFkc/8sqe9SMtLHV9lChoBmgJaA9DCGHe40xT0XBAlIaUUpRoFUvAaBZHP/MEWqLjxTd1fZQoaAZoCWgPQwgj9DP1ug1zQJSGlFKUaBVLx2gWRz/0AP7N0NjLdX2UKGgGaAloD0MICK9d2nBPcECUhpRSlGgVS89oFkc/9NOP/7zkIXV9lChoBmgJaA9DCLjkuFP6kXBAlIaUUpRoFUvTaBZHP/VkyDZlFtt1fZQoaAZoCWgPQwgsgCkDB3JxQJSGlFKUaBVL1WgWRz/1mFWXC0ngdX2UKGgGaAloD0MIuvQvSWUcckCUhpRSlGgVS9ZoFkc/9bK+zt1IRXV9lChoBmgJaA9DCFe0Oc6tlHBAlIaUUpRoFUvXaBZHP/XNbTtsvZh1fZQoaAZoCWgPQwg7w9SWOolwQJSGlFKUaBVL2GgWRz/16fFrEcbSdX2UKGgGaAloD0MIct9qnfg5cUCUhpRSlGgVS9hoFkc/9erxRVIZqHV9lChoBmgJaA9DCHtKzok9unJAlIaUUpRoFUvcaBZHP/YwxWT5ftx1fZQoaAZoCWgPQwj5254gMTl0QJSGlFKUaBVL4GgWRz/2g/LTx5LRdX2UKGgGaAloD0MITtAmh4+ic0CUhpRSlGgVS+5oFkc/96IacZtNz3V9lChoBmgJaA9DCEXZW8o5b3FAlIaUUpRoFUvyaBZHP/fhwEQoTf11fZQoaAZoCWgPQwh1VgvsMWEyQJSGlFKUaBVLjWgWR0AAmiUPhAGCdX2UKGgGaAloD0MI2qhOB/KAcUCUhpRSlGgVS9FoFkdAA4AXEZR8+nV9lChoBmgJaA9DCBnL9EsEInJAlIaUUpRoFUvHaBZHQAOfnfVI7Nl1fZQoaAZoCWgPQwgnTYOiOSBzQJSGlFKUaBVLzmgWR0AD/g75mAbydX2UKGgGaAloD0MI/ijqzP1IcUCUhpRSlGgVS9JoFkdABBme18b70nV9lChoBmgJaA9DCD18mSjCDnJAlIaUUpRoFUvHaBZHQASCz9jwx351fZQoaAZoCWgPQwh9I7pnHVVxQJSGlFKUaBVL32gWR0AGHMt9QXQ/dX2UKGgGaAloD0MIeei7W1mgb0CUhpRSlGgVS95oFkdABiyZa3ZwoHV9lChoBmgJaA9DCFdbsb+sPXBAlIaUUpRoFUvFaBZHQAYuMl1KXfJ1fZQoaAZoCWgPQwhWgzC3+0ZyQJSGlFKUaBVL1GgWR0AGPPomois5dX2UKGgGaAloD0MI5pMVw9Uhb0CUhpRSlGgVS9loFkdABkrS3LFGX3V9lChoBmgJaA9DCHrHKTrS43FAlIaUUpRoFUvgaBZHQAZhpYcNpdt1fZQoaAZoCWgPQwi95erHJutwQJSGlFKUaBVL6GgWR0AGzD8+A3DOdX2UKGgGaAloD0MI5j3ONKHpckCUhpRSlGgVS+poFkdABvpeu3c583V9lChoBmgJaA9DCDsdyHqqanJAlIaUUpRoFUv5aBZHQAfRdhRZU1h1fZQoaAZoCWgPQwhrup7o+nZxQJSGlFKUaBVL5WgWR0AIFcyFfzBidX2UKGgGaAloD0MIZmmn5jKEckCUhpRSlGgVS9poFkdADJZuhsZYP3V9lChoBmgJaA9DCAVsByM2AXNAlIaUUpRoFUvEaBZHQA4ipeeFtbd1fZQoaAZoCWgPQwjzzMthN9pwQJSGlFKUaBVLv2gWR0AOW/FirksCdX2UKGgGaAloD0MIBHXKo1vyc0CUhpRSlGgVS8hoFkdADpSCOFQEZHV9lChoBmgJaA9DCLIrLSO1l3BAlIaUUpRoFUvFaBZHQA7Nn5BTn7p1fZQoaAZoCWgPQwjI0/ID1+1uQJSGlFKUaBVL1WgWR0AQDxNIsiB5dX2UKGgGaAloD0MINnUeFf+mcUCUhpRSlGgVS7VoFkdAEBlANXo1UHV9lChoBmgJaA9DCB8vpMNDHXFAlIaUUpRoFUvHaBZHQBCBGUfPomp1fZQoaAZoCWgPQwg3jliLD8RyQJSGlFKUaBVLymgWR0AQiSxJNCZ4dX2UKGgGaAloD0MIVUs6ygENckCUhpRSlGgVS8poFkdAEOAi3XqZ+nV9lChoBmgJaA9DCAwiUtPuSHJAlIaUUpRoFUvaaBZHQBEBzeXRgJF1fZQoaAZoCWgPQwhOnNzv0HFwQJSGlFKUaBVL3GgWR0ARDied07r+dX2UKGgGaAloD0MIH9eGivHPc0CUhpRSlGgVS91oFkdAESL5hz/6wnV9lChoBmgJaA9DCHGvzFs1GHNAlIaUUpRoFUvbaBZHQBFk70WdmQN1fZQoaAZoCWgPQwjhRPRra85vQJSGlFKUaBVL2GgWR0ARogbIcR16dX2UKGgGaAloD0MIQKIJFDGQcUCUhpRSlGgVTQwBaBZHQBOgVKwpvxZ1fZQoaAZoCWgPQwi45o7+F21uQJSGlFKUaBVL02gWR0AUaH6/IsAedX2UKGgGaAloD0MIGonQCLYIb0CUhpRSlGgVS8hoFkdAFNx+KCQLeHV9lChoBmgJaA9DCLA3MSQnBnFAlIaUUpRoFUvZaBZHQBVoAXEZR9B1fZQoaAZoCWgPQwjeBUoKrD9zQJSGlFKUaBVL1mgWR0AVdW+49X9zdX2UKGgGaAloD0MIfQbUm5Fmc0CUhpRSlGgVS9hoFkdAFaM3qAz55HV9lChoBmgJaA9DCK4SLA5nJ29AlIaUUpRoFUvFaBZHQBZBzJZGKAJ1fZQoaAZoCWgPQwijPPNyWJlxQJSGlFKUaBVL2mgWR0AWdKNAC4jKdX2UKGgGaAloD0MIfa62Yv9Zb0CUhpRSlGgVS8NoFkdAFpI+nqFAV3V9lChoBmgJaA9DCKzgtyFG+HFAlIaUUpRoFUvYaBZHQBbUHY6GQCF1fZQoaAZoCWgPQwjon+BiRbFzQJSGlFKUaBVLxmgWR0AW2h4+r2g4dX2UKGgGaAloD0MIwELmyqAjc0CUhpRSlGgVTQQBaBZHQBd2YF7laKV1fZQoaAZoCWgPQwjye5v+7KFyQJSGlFKUaBVL32gWR0AXg/LTx5LRdX2UKGgGaAloD0MIm+jzUUYbc0CUhpRSlGgVS+hoFkdAF6x+rlvIfnV9lChoBmgJaA9DCI3ttaD3qXFAlIaUUpRoFUvfaBZHQBfVxwQ176Z1fZQoaAZoCWgPQwifyf55mnVzQJSGlFKUaBVL4GgWR0AYJJTVDrqudX2UKGgGaAloD0MIrWhznJsJckCUhpRSlGgVS8ZoFkdAGbNn5BTn73V9lChoBmgJaA9DCEZ4exACxnBAlIaUUpRoFUv0aBZHQBopAt4A0bd1fZQoaAZoCWgPQwhDrWneMb9xQJSGlFKUaBVLxmgWR0AasvGp++dtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 936, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70a2af43a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70a2af4430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70a2af44c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70a2af4550>", "_build": "<function ActorCriticPolicy._build at 0x7f70a2af45e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f70a2af4670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70a2af4700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70a2af4790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70a2af4820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70a2af48b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70a2af4940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70a2aeba20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673359954032143612, "learning_rate": 1e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJovmzw41t27KIuPO+YTkzwUwES9VVt3PQAAgD8AAIA/puX0PYTpWD6C6zS+1NbfvvcHlTzysHG9AAAAAAAAAADNpP27YXXbPXazcT0tVOi+EMMvPQgzI70AAAAAAAAAAJr117spdHK62ZgPPK5tk7vwsaO70meGvAAAgD8AAIA/Zj89PcSMyz4DlIo8uMAFv5ZTHj3M2MY8AAAAAAAAAAB63Qe+4+0vP7In7bze9ia/ORqBvlWNBT4AAAAAAAAAAAAfCb7+ZWo/QJKvvT6LIb9CHY2+uqbIvAAAAAAAAAAABhDDPrrVrr2TawQ8HKNAPBlkJr4+NUe7AACAPwAAgD8zp3U9D4mQP0YFKz4hNim/IQ3iPRPQdj0AAAAAAAAAAHNSlz0B6/A+8o4MvqPnA7/7s8W8iIPHvAAAAAAAAAAAzaRJOwqXNLmpopc56fF8tynHmzsuZ7G4AACAPwAAgD+aOcA7dka1P6kaGD/h23A+bYPeu8XQCb4AAAAAAAAAAAD4A7wboea8tYyVvKI01L1hJbk9eZPIPgAAgD8AAIA/wsyJvnOjJz873Sg+IBwYv/wR0L5T+aE+AAAAAAAAAADzN4K9bXGSP73TdL4O8SK/X4gSvhgT9L0AAAAAAAAAAIAkE70cXDK8fT13PIoiNj3/3mc81pWYugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+tAF9a20b0CUhpRSlIwBbJRLvIwBdJRHQHhiVHJ9y951fZQoaAZoCWgPQwgnLscr0FlxQJSGlFKUaBVNCwFoFkdAeGKm9QGfPHV9lChoBmgJaA9DCKInZVLDd3JAlIaUUpRoFUuyaBZHQHhkoPCl7+l1fZQoaAZoCWgPQwiHGoUk89pxQJSGlFKUaBVLt2gWR0B4ZthnanJldX2UKGgGaAloD0MIAFMGDiiKcUCUhpRSlGgVS/BoFkdAeGc15Sm65HV9lChoBmgJaA9DCA/uztotg3FAlIaUUpRoFU1wAWgWR0B4aSAc1fmcdX2UKGgGaAloD0MIYyXmWUnBcUCUhpRSlGgVS9doFkdAeGqMWGh24nV9lChoBmgJaA9DCNVcbjDUjnBAlIaUUpRoFUu+aBZHQHhrySidrft1fZQoaAZoCWgPQwgNjpJXZ+ZvQJSGlFKUaBVLxGgWR0B4bIbrC3w1dX2UKGgGaAloD0MIowc+BmvXckCUhpRSlGgVS9RoFkdAeG5J/G2kSHV9lChoBmgJaA9DCBmqYir9m3JAlIaUUpRoFUvLaBZHQHhwsoDxLCh1fZQoaAZoCWgPQwhPQBNhg0xzQJSGlFKUaBVL7WgWR0B4cV5jYqXodX2UKGgGaAloD0MIbNCX3n69ckCUhpRSlGgVTeoBaBZHQHhyhzvJA+p1fZQoaAZoCWgPQwgxfERMCW9xQJSGlFKUaBVLqmgWR0B4dNzo2XLNdX2UKGgGaAloD0MIotPzbiw0b0CUhpRSlGgVS/loFkdAeHd5ksjFAHV9lChoBmgJaA9DCLyS5Ll+3nFAlIaUUpRoFUvjaBZHQHh4FAiV0Ld1fZQoaAZoCWgPQwgAcy1agJVxQJSGlFKUaBVLx2gWR0B4eSh4+r2hdX2UKGgGaAloD0MIHozYJ0BickCUhpRSlGgVS8doFkdAeHuHDJlrdnV9lChoBmgJaA9DCHLBGfx9HHBAlIaUUpRoFUvLaBZHQHh+lLBbfP51fZQoaAZoCWgPQwgyIlFomSxzQJSGlFKUaBVL+GgWR0B4fyOdXko4dX2UKGgGaAloD0MItFpgj0kwc0CUhpRSlGgVS9doFkdAeH+Up/gBLnV9lChoBmgJaA9DCHRDU3b6c3BAlIaUUpRoFUvNaBZHQHiA2U0Nz8x1fZQoaAZoCWgPQwim0HmN3YJyQJSGlFKUaBVLvGgWR0B4gkouwosqdX2UKGgGaAloD0MI0opvKPxScUCUhpRSlGgVS+RoFkdAeIS1B+nZTXV9lChoBmgJaA9DCGuCqPuAYHJAlIaUUpRoFUvbaBZHQHiE0ZNwiq11fZQoaAZoCWgPQwhLrIxGvr5wQJSGlFKUaBVLt2gWR0B4heEug6EKdX2UKGgGaAloD0MIDCHn/T8ZcUCUhpRSlGgVS7VoFkdAeIZRcNYr8XV9lChoBmgJaA9DCOMcdXRcuFBAlIaUUpRoFUt+aBZHQHiGfzreImB1fZQoaAZoCWgPQwjQfM7dLplwQJSGlFKUaBVL42gWR0B46EkKNQ0odX2UKGgGaAloD0MINxlVhnHYc0CUhpRSlGgVS9BoFkdAeOnsFdLQHHV9lChoBmgJaA9DCCl64GMwYHJAlIaUUpRoFUvkaBZHQHjuTh5xBE91fZQoaAZoCWgPQwiB7PXuzyt0QJSGlFKUaBVLxGgWR0B48TSofjjrdX2UKGgGaAloD0MIsYhhhzGdb0CUhpRSlGgVS+poFkdAePFu4gA6uHV9lChoBmgJaA9DCBd/2xPkh3BAlIaUUpRoFUu8aBZHQHj0ab4Ju2t1fZQoaAZoCWgPQwgkl/+Q/t9zQJSGlFKUaBVLx2gWR0B49KCAc1fmdX2UKGgGaAloD0MIUb8LW/M0cECUhpRSlGgVS81oFkdAePWwhnrY5HV9lChoBmgJaA9DCKfs9IM69nFAlIaUUpRoFUvCaBZHQHj2NuxbB451fZQoaAZoCWgPQwgP7s7a7eduQJSGlFKUaBVNFQFoFkdAePgLApKBd3V9lChoBmgJaA9DCKa3PxeNsHFAlIaUUpRoFUvRaBZHQHj5Dk+5e7d1fZQoaAZoCWgPQwgZ5ZmXAzVzQJSGlFKUaBVLvmgWR0B4+W6vq1PWdX2UKGgGaAloD0MIYCAIkCGZckCUhpRSlGgVS99oFkdAeP0sY2sJY3V9lChoBmgJaA9DCPj/ccKEw0hAlIaUUpRoFUuKaBZHQHj+C8SPEKp1fZQoaAZoCWgPQwhrYKsEy4FxQJSGlFKUaBVL3mgWR0B4/xOO801qdX2UKGgGaAloD0MIvajdr0IIc0CUhpRSlGgVS+JoFkdAeP9E4Nqgy3V9lChoBmgJaA9DCDVFgNP76HBAlIaUUpRoFUvXaBZHQHkAB/ViF0x1fZQoaAZoCWgPQwiNe/MbptdzQJSGlFKUaBVL22gWR0B5AnXAdn01dX2UKGgGaAloD0MI31D4bF0CcUCUhpRSlGgVS7poFkdAeQulgtvn83V9lChoBmgJaA9DCPkUAONZAXNAlIaUUpRoFUvlaBZHQHkL6SxJNCZ1fZQoaAZoCWgPQwjs3R/vlRtwQJSGlFKUaBVL1mgWR0B5DVw71ZkkdX2UKGgGaAloD0MIV7Wko5xkckCUhpRSlGgVS8FoFkdAeQ8JoCdSVHV9lChoBmgJaA9DCA3jbhDtRHJAlIaUUpRoFUvAaBZHQHkQ8wxnFpB1fZQoaAZoCWgPQwiP3nAfuTVzQJSGlFKUaBVL5GgWR0B5ERL/S6UadX2UKGgGaAloD0MIAi1dwTbIc0CUhpRSlGgVS+9oFkdAeREZzgdfcHV9lChoBmgJaA9DCOs7vyiBEXJAlIaUUpRoFUvNaBZHQHkR99hJAdJ1fZQoaAZoCWgPQwicps8O+F1yQJSGlFKUaBVNMgFoFkdAeRXVObiIcnV9lChoBmgJaA9DCOfG9IRlqnJAlIaUUpRoFUvTaBZHQHkXT3RG+bp1fZQoaAZoCWgPQwggRgiP9rxxQJSGlFKUaBVLzmgWR0B5GKksSTQmdX2UKGgGaAloD0MItRX7y67lckCUhpRSlGgVS8NoFkdAeRsKT0QK8nV9lChoBmgJaA9DCGxB742hlXJAlIaUUpRoFUv2aBZHQHkcYe5nUUh1fZQoaAZoCWgPQwiK6NfWT9xuQJSGlFKUaBVNBAFoFkdAeSBi1AqusHV9lChoBmgJaA9DCNnpB3VRBXNAlIaUUpRoFUuvaBZHQHkh56Y3Ns51fZQoaAZoCWgPQwhkXHFxVAVwQJSGlFKUaBVLwmgWR0B5JbWK/EfldX2UKGgGaAloD0MI/3Vu2kxpcUCUhpRSlGgVS85oFkdAeSXxgAp8W3V9lChoBmgJaA9DCEOu1LOgim9AlIaUUpRoFUvAaBZHQHko25UcXFd1fZQoaAZoCWgPQwiHiQYp+JdzQJSGlFKUaBVLyGgWR0B5Kcw1zhgmdX2UKGgGaAloD0MILbRzmoVgckCUhpRSlGgVS7FoFkdAeSwJuVHFxXV9lChoBmgJaA9DCJhsPNiilnNAlIaUUpRoFUvpaBZHQHksaHKwIMV1fZQoaAZoCWgPQwiEoKNVLehuQJSGlFKUaBVL4mgWR0B5LnzVc2R8dX2UKGgGaAloD0MIqrpHNlcCckCUhpRSlGgVS/doFkdAeTBUNayKN3V9lChoBmgJaA9DCHHmV3NAvHNAlIaUUpRoFUu6aBZHQHkwi+QEIPd1fZQoaAZoCWgPQwgsfeiC+o5wQJSGlFKUaBVL02gWR0B5MhgWrOqvdX2UKGgGaAloD0MI3uhjPiAoK0CUhpRSlGgVS2VoFkdAeTNHd43WF3V9lChoBmgJaA9DCCOgwhFkYHJAlIaUUpRoFUvoaBZHQHk4sQumJnB1fZQoaAZoCWgPQwj/JalMMZhvQJSGlFKUaBVLwGgWR0B5OQ3wTdtVdX2UKGgGaAloD0MIL6aZ7nV4cUCUhpRSlGgVS+VoFkdAeTnMSK3uu3V9lChoBmgJaA9DCJrrNNLSM3BAlIaUUpRoFUvEaBZHQHk7I1P3ztl1fZQoaAZoCWgPQwiXVG03wclNQJSGlFKUaBVLn2gWR0B5QMeDFqBVdX2UKGgGaAloD0MIgy9MpgrqQkCUhpRSlGgVS39oFkdAeUDs8xKxs3V9lChoBmgJaA9DCGH/dW5a2XFAlIaUUpRoFUvYaBZHQHlCET101ZV1fZQoaAZoCWgPQwjwbmWJDnpwQJSGlFKUaBVLyWgWR0B5Q23z+WGAdX2UKGgGaAloD0MIob5lTpdlDkCUhpRSlGgVS11oFkdAeUUac7Qsw3V9lChoBmgJaA9DCPPIHwz8OnFAlIaUUpRoFUvQaBZHQHlFWQGOdXl1fZQoaAZoCWgPQwjfcB+59TVxQJSGlFKUaBVLzmgWR0B5R1d6cAindX2UKGgGaAloD0MIt17Tg8LjcECUhpRSlGgVS7loFkdAeUhMewLVnXV9lChoBmgJaA9DCMKE0awsOXFAlIaUUpRoFUvGaBZHQHlIaUaAFxJ1fZQoaAZoCWgPQwhrm+JxUTBxQJSGlFKUaBVL3WgWR0B5TqxTsIE9dX2UKGgGaAloD0MI5e5zfPT5cUCUhpRSlGgVS+xoFkdAeVIbx3FDOXV9lChoBmgJaA9DCDifOlYpWm9AlIaUUpRoFUvOaBZHQHlVEBfa6Bl1fZQoaAZoCWgPQwjWpxyTRQBzQJSGlFKUaBVL1GgWR0B5V3p6hQFcdX2UKGgGaAloD0MIDmWoiqkBckCUhpRSlGgVS69oFkdAeVhFgDzRQnV9lChoBmgJaA9DCDFD44mg1m5AlIaUUpRoFUu5aBZHQHla9rXUYsN1fZQoaAZoCWgPQwgY6xuY3ONvQJSGlFKUaBVL/GgWR0B5WwHpr1ujdX2UKGgGaAloD0MIdhvUfus2cUCUhpRSlGgVS69oFkdAeV0XlbNbDHV9lChoBmgJaA9DCMvVj01yKHNAlIaUUpRoFUvWaBZHQHleC/XXiBJ1fZQoaAZoCWgPQwjpCyHn/axxQJSGlFKUaBVLtmgWR0B5YH/vOQhfdX2UKGgGaAloD0MIrW71nLRkcUCUhpRSlGgVS+JoFkdAeWJHk92X9nV9lChoBmgJaA9DCO6W5IDdwmVAlIaUUpRoFU3oA2gWR0B5YzDFZPl/dX2UKGgGaAloD0MIKLUX0fa9cUCUhpRSlGgVS+toFkdAeWVtaIN3GHV9lChoBmgJaA9DCA6GOqzwpnJAlIaUUpRoFUvcaBZHQHlmjT8YQ8R1fZQoaAZoCWgPQwjdCmE1lsJFwJSGlFKUaBVLW2gWR0B5aUIhQm/ndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1476, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 289.8923879643563, "std_reward": 14.26613921347132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T13:28:29.638940"}
 
1
+ {"mean_reward": 286.5794504721516, "std_reward": 19.821452623727048, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T14:21:28.772493"}