SiyuanH commited on
Commit
f0b0f0f
1 Parent(s): b0748e0

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</action>": 92554,
3
+ "</box>": 92552,
4
+ "</cam>": 92556,
5
+ "</img>": 92545,
6
+ "</quad>": 92548,
7
+ "</ref>": 92550,
8
+ "<IMG_CONTEXT>": 92546,
9
+ "<action>": 92553,
10
+ "<box>": 92551,
11
+ "<cam>": 92555,
12
+ "<img>": 92544,
13
+ "<quad>": 92547,
14
+ "<ref>": 92549
15
+ }
config.json ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": false,
14
+ "force_image_size": 448,
15
+ "llm_config": {
16
+ "_name_or_path": "internlm/internlm2_5-7b-chat",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "InternLM2ForCausalLM"
20
+ ],
21
+ "attn_implementation": "eager",
22
+ "auto_map": {
23
+ "AutoConfig": "configuration_internlm2.InternLMConfig",
24
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
25
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bias": false,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 2,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 4096,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 14336,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "min_length": 0,
61
+ "model_type": "internlm2",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 32,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 32,
67
+ "num_key_value_heads": 8,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 2,
73
+ "prefix": null,
74
+ "pretraining_tp": 1,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "rms_norm_eps": 1e-05,
82
+ "rope_scaling": {
83
+ "factor": 2.0,
84
+ "type": "dynamic"
85
+ },
86
+ "rope_theta": 1000000,
87
+ "sep_token_id": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": false,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torch_dtype": "bfloat16",
98
+ "torchscript": false,
99
+ "transformers_version": "4.44.2",
100
+ "typical_p": 1.0,
101
+ "use_bfloat16": true,
102
+ "use_cache": false,
103
+ "vocab_size": 92557
104
+ },
105
+ "max_dynamic_patch": 6,
106
+ "min_dynamic_patch": 1,
107
+ "model_type": "internvl_chat",
108
+ "pad2square": false,
109
+ "ps_version": "v2",
110
+ "select_layer": -1,
111
+ "template": "internlm2-chat",
112
+ "torch_dtype": "float16",
113
+ "transformers_version": null,
114
+ "use_backbone_lora": 0,
115
+ "use_llm_lora": 0,
116
+ "use_thumbnail": true,
117
+ "vision_config": {
118
+ "_name_or_path": "",
119
+ "add_cross_attention": false,
120
+ "architectures": [
121
+ "InternVisionModel"
122
+ ],
123
+ "attention_dropout": 0.0,
124
+ "bad_words_ids": null,
125
+ "begin_suppress_tokens": null,
126
+ "bos_token_id": null,
127
+ "chunk_size_feed_forward": 0,
128
+ "cross_attention_hidden_size": null,
129
+ "decoder_start_token_id": null,
130
+ "diversity_penalty": 0.0,
131
+ "do_sample": false,
132
+ "drop_path_rate": 0.1,
133
+ "dropout": 0.0,
134
+ "early_stopping": false,
135
+ "encoder_no_repeat_ngram_size": 0,
136
+ "eos_token_id": null,
137
+ "exponential_decay_length_penalty": null,
138
+ "finetuning_task": null,
139
+ "forced_bos_token_id": null,
140
+ "forced_eos_token_id": null,
141
+ "hidden_act": "gelu",
142
+ "hidden_size": 1024,
143
+ "id2label": {
144
+ "0": "LABEL_0",
145
+ "1": "LABEL_1"
146
+ },
147
+ "image_size": 448,
148
+ "initializer_factor": 1.0,
149
+ "initializer_range": 0.02,
150
+ "intermediate_size": 4096,
151
+ "is_decoder": false,
152
+ "is_encoder_decoder": false,
153
+ "label2id": {
154
+ "LABEL_0": 0,
155
+ "LABEL_1": 1
156
+ },
157
+ "layer_norm_eps": 1e-06,
158
+ "length_penalty": 1.0,
159
+ "max_length": 20,
160
+ "min_length": 0,
161
+ "model_type": "intern_vit_6b",
162
+ "no_repeat_ngram_size": 0,
163
+ "norm_type": "layer_norm",
164
+ "num_attention_heads": 16,
165
+ "num_beam_groups": 1,
166
+ "num_beams": 1,
167
+ "num_channels": 3,
168
+ "num_hidden_layers": 24,
169
+ "num_return_sequences": 1,
170
+ "output_attentions": false,
171
+ "output_hidden_states": false,
172
+ "output_scores": false,
173
+ "pad_token_id": null,
174
+ "patch_size": 14,
175
+ "prefix": null,
176
+ "problem_type": null,
177
+ "pruned_heads": {},
178
+ "qk_normalization": false,
179
+ "qkv_bias": true,
180
+ "remove_invalid_values": false,
181
+ "repetition_penalty": 1.0,
182
+ "return_dict": true,
183
+ "return_dict_in_generate": false,
184
+ "sep_token_id": null,
185
+ "suppress_tokens": null,
186
+ "task_specific_params": null,
187
+ "temperature": 1.0,
188
+ "tf_legacy_loss": false,
189
+ "tie_encoder_decoder": false,
190
+ "tie_word_embeddings": true,
191
+ "tokenizer_class": null,
192
+ "top_k": 50,
193
+ "top_p": 1.0,
194
+ "torch_dtype": "bfloat16",
195
+ "torchscript": false,
196
+ "transformers_version": "4.44.2",
197
+ "typical_p": 1.0,
198
+ "use_bfloat16": true,
199
+ "use_flash_attn": true
200
+ },
201
+ "with_camera_param": false,
202
+ "with_stn": false,
203
+ "with_wrist_camera": false
204
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
conversation.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
334
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
335
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
336
+ # Therefore, they are completely equivalent during inference.
337
+ register_conv_template(
338
+ Conversation(
339
+ name='Hermes-2',
340
+ system_template='<|im_start|>system\n{system_message}',
341
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
342
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
343
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
344
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
345
+ sep_style=SeparatorStyle.MPT,
346
+ sep='<|im_end|>',
347
+ stop_token_ids=[
348
+ 2,
349
+ 6,
350
+ 7,
351
+ 8,
352
+ ],
353
+ stop_str='<|endoftext|>',
354
+ )
355
+ )
356
+
357
+
358
+ register_conv_template(
359
+ Conversation(
360
+ name='internlm2-chat',
361
+ system_template='<|im_start|>system\n{system_message}',
362
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
363
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
364
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
365
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
366
+ sep_style=SeparatorStyle.MPT,
367
+ sep='<|im_end|>',
368
+ stop_token_ids=[
369
+ 2,
370
+ 92543,
371
+ 92542
372
+ ]
373
+ )
374
+ )
375
+
376
+
377
+ register_conv_template(
378
+ Conversation(
379
+ name='phi3-chat',
380
+ system_template='<|system|>\n{system_message}',
381
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
382
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
383
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
384
+ roles=('<|user|>\n', '<|assistant|>\n'),
385
+ sep_style=SeparatorStyle.MPT,
386
+ sep='<|end|>',
387
+ stop_token_ids=[
388
+ 2,
389
+ 32000,
390
+ 32007
391
+ ]
392
+ )
393
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a0609596e7dc688356ffbc2f83536fad7694ee76aaf1e7fec0661316bbde5b
3
+ size 10054886
lmdeploy_infer.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+ import ast
4
+ from io import BytesIO
5
+ from typing import List, Union
6
+ import torch
7
+
8
+ from PIL import Image, ImageFile
9
+ import numpy as np
10
+ from scipy.spatial.transform import Rotation
11
+
12
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, PytorchEngineConfig
13
+ IMAGE_TOKEN = '<IMAGE_TOKEN>'
14
+
15
+ def normalize_quaternion(quat):
16
+ return np.array(quat) / np.linalg.norm(quat, axis=-1, keepdims=True)
17
+
18
+ def quaternion_to_discrete_euler(quaternion, bins_num=256):
19
+ euler = Rotation.from_quat(quaternion).as_euler('xyz', degrees=True) + 180
20
+ resolution = 360 / bins_num
21
+ disc = np.around((euler / resolution)).astype(int)
22
+ disc[disc == bins_num] = 0
23
+ return disc
24
+
25
+ def discrete_euler_to_quaternion(discrete_euler, bins_num=256):
26
+ resolution = 360 / bins_num
27
+ euler = (discrete_euler * resolution) - 180
28
+ return Rotation.from_euler('xyz', euler, degrees=True).as_quat()
29
+
30
+
31
+ class RotationActionDiscretizer:
32
+ def __init__(self, bins_num=256, min_action=-1, max_action=1):
33
+ """
34
+ Note: the input action is quaternion
35
+ Args: bins_num: Number of bins to discretize the rotation space into.
36
+ """
37
+ self.bins_num = bins_num
38
+
39
+ def discretize(self, action: Union[np.ndarray, List[float]], degrees=False):
40
+ # Check if the input action is quaternion or euler
41
+ if len(action) == 4:
42
+ return quaternion_to_discrete_euler(normalize_quaternion(action), bins_num=self.bins_num)
43
+ else:
44
+ return quaternion_to_discrete_euler(
45
+ normalize_quaternion(Rotation.from_euler('xyz', action, degrees=degrees).as_quat()),
46
+ bins_num=self.bins_num
47
+ )
48
+
49
+ def undiscretize(self, discrete_action):
50
+ return normalize_quaternion(discrete_euler_to_quaternion(discrete_action, bins_num=self.bins_num))
51
+
52
+ def get_action_space(self):
53
+ return self.bins_num
54
+
55
+ def generate_discrete_special_tokens(self)-> List[str]:
56
+ return [f"<rot{i}>" for i in range(self.bins_num)]
57
+
58
+ def map_4d_quaternion_to_special_tokens(self, action) -> List[str]:
59
+ discretiezd_action = self.discretize(action)
60
+ return [f"<rot{action}>" for action in discretiezd_action]
61
+
62
+ def map_roll_pitch_yaw_to_special_tokens(self, roll_pitch_yaw: Union[np.ndarray, List[float]], degrees=False) -> List[str]:
63
+ discretized_action = self.discretize(roll_pitch_yaw, degrees)
64
+ return [f"<rot{a}>" for a in discretized_action]
65
+
66
+
67
+ class TranslationActionDiscretizer:
68
+ def __init__(self, bins_num=256, min_action=-1, max_action=1):
69
+ self.bins_num = bins_num
70
+ self.min_action = min_action
71
+ self.max_action = max_action
72
+
73
+ # Create Uniform Bins + Compute Bin Centers
74
+ self.bins = np.linspace(min_action, max_action, bins_num)
75
+ self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
76
+
77
+ def discretize(self, action: np.ndarray):
78
+ action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
79
+ discretized_action = np.digitize(action, self.bins)
80
+ return discretized_action
81
+
82
+ def undiscretize(self, discrete_action):
83
+ """
84
+ NOTE =>> Because of the way the actions are discretized w.r.t. the bins (and not the bin centers), the
85
+ digitization returns bin indices between [1, # bins], inclusive, when there are actually only
86
+ (# bins - 1) bin intervals.
87
+
88
+ Therefore, if the digitization returns the last possible index, we map this to the last bin interval.
89
+
90
+ EXAMPLE =>> Let's say self._bins has 256 values. Then self._bin_centers has 255 values. Digitization returns
91
+ indices between [1, 256]. We subtract 1 from all indices so that they are between [0, 255]. There
92
+ is still one index (i==255) that would cause an out-of-bounds error if used to index into
93
+ self._bin_centers. Therefore, if i==255, we subtract 1 from it so that it just becomes the index of
94
+ the last bin center. We implement this simply via clipping between [0, 255 - 1].
95
+ """
96
+
97
+ discrete_action = np.clip(discrete_action - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
98
+ undiscretized_action = self.bin_centers[discrete_action]
99
+
100
+ # Clamp the result to the action bounds
101
+ return np.clip(undiscretized_action, self.min_action, self.max_action)
102
+
103
+ def get_action_space(self):
104
+ return self.bins_num
105
+
106
+ def generate_discrete_special_tokens(self)-> List[str]:
107
+ return [f"<loc{i}>" for i in range(self.bins_num)]
108
+
109
+ def map_3d_action_to_special_tokens(self, action) -> List[str]:
110
+ discretiezd_action = self.discretize(action)
111
+ return [f"<loc{action}>" for action in discretiezd_action]
112
+
113
+
114
+ class OpennessActionDiscretizer:
115
+ def __init__(self, bins_num=256, min_openness=0, max_openness=1):
116
+ """
117
+ Args:
118
+ bins_num: Number of bins to discretize the openness space into.
119
+ min_openness: Minimum openness of the gripper.
120
+ max_openness: Maximum openness of the gripper.
121
+ """
122
+ self.bins_num = bins_num
123
+ self.min_openness = min_openness
124
+ self.max_openness = max_openness
125
+
126
+ # Create Uniform Bins + Compute Bin Centers
127
+ self.bins = np.linspace(min_openness, max_openness, bins_num)
128
+ self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
129
+
130
+ def discretize(self, openness: float):
131
+ openness = np.clip(openness, a_min=self.min_openness, a_max=self.max_openness)
132
+ discretized_openness = np.digitize(openness, self.bins)
133
+ return discretized_openness
134
+
135
+ def undiscretize(self, discrete_openness):
136
+ discrete_openness = np.clip(discrete_openness - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
137
+ return self.bin_centers[discrete_openness]
138
+
139
+ def get_action_space(self):
140
+ return self.bins_num
141
+
142
+ def generate_discrete_special_tokens(self) -> List[str]:
143
+ return [f"<open{i}>" for i in range(self.bins_num)]
144
+
145
+ def map_openness_to_special_tokens(self, openness) -> List[str]:
146
+ discretized_openness = self.discretize(openness)
147
+ return [f"<open{discretized_openness}>"]
148
+
149
+ # def construct_lmdeploy_tasks(jsonl_path):
150
+ # data = load_jsonl(jsonl_path)
151
+
152
+ # lmdeploy_tasks = []
153
+ # for sample_idx, item in enumerate(data):
154
+
155
+ # langs = item["conversations"][0]["value"]
156
+ # langs = langs.replace("<image>", IMAGE_TOKEN)
157
+ # image_urls = [
158
+ # os.path.join(sample_save_folder, f"{sample_idx}_{im_idx}.png") for im_idx in range(len(item["image"]))
159
+ # ]
160
+ # gt_lang = item["conversations"][1]["value"]
161
+ # lmdeploy_tasks.append((langs, image_urls, gt_lang))
162
+
163
+ # return lmdeploy_tasks
164
+
165
+ def load_image_from_base64(image: Union[bytes, str]) -> Image.Image:
166
+ """load image from base64 format."""
167
+ return Image.open(BytesIO(base64.b64decode(image)))
168
+
169
+ def load_image(image_url: Union[str, Image.Image]) -> Image.Image:
170
+ """load image from url, local path or openai GPT4V."""
171
+ FETCH_TIMEOUT = int(os.environ.get('LMDEPLOY_FETCH_TIMEOUT', 10))
172
+ headers = {
173
+ 'User-Agent':
174
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
175
+ '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
176
+ }
177
+ try:
178
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
179
+ if isinstance(image_url, Image.Image):
180
+ img = image_url
181
+ else:
182
+ # Load image from local path
183
+ img = Image.open(image_url)
184
+
185
+ # check image valid
186
+ img = img.convert('RGB')
187
+ except Exception as error:
188
+ if isinstance(image_url, str) and len(image_url) > 100:
189
+ image_url = image_url[:100] + ' ...'
190
+ print(f'{error}, image_url={image_url}')
191
+ # use dummy image
192
+ img = Image.new('RGB', (32, 32))
193
+
194
+ return img
195
+
196
+ # Function to print GPU memory usage
197
+ def print_gpu_memory():
198
+ if torch.cuda.is_available():
199
+ allocated_memory = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
200
+ cached_memory = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
201
+ print(f"Allocated GPU Memory: {allocated_memory:.2f} MB")
202
+ print(f"Cached GPU Memory: {cached_memory:.2f} MB")
203
+ else:
204
+ print("CUDA is not available.")
205
+
206
+ print_gpu_memory()
207
+ model = '/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit'
208
+ if "bit" in model:
209
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
210
+ else:
211
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
212
+ # pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5, quant_policy=8), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
213
+ print_gpu_memory()
214
+
215
+ TRANS_MAX = 0.275
216
+ TRANS_MIN = -0.275
217
+
218
+ ROT_MIN = -0.350
219
+ ROT_MAX = 0.395
220
+
221
+ OPEN_MIN = -0.388
222
+ OPEN_MAX = 0.300
223
+
224
+ translation_bins_num = 256
225
+ rotation_bins_num = 256
226
+ openness_bins_num = 256
227
+ translation_action_discretizer = TranslationActionDiscretizer(bins_num=translation_bins_num, max_action=TRANS_MAX, min_action=TRANS_MIN)
228
+ rotation_action_discretizer = RotationActionDiscretizer(bins_num=rotation_bins_num, min_action=ROT_MIN, max_action=ROT_MAX)
229
+ openness_action_discretizer = OpennessActionDiscretizer(bins_num=openness_bins_num, min_openness=OPEN_MIN, max_openness=OPEN_MAX)
230
+
231
+ VQA_FORMAT = f"{IMAGE_TOKEN}\n {IMAGE_TOKEN}\n Given the observation images from the wrist camera mounted at CAM_PARAM and the overhead camera mounted at CAM_PARAM, please provide the action that the robot should take to finish the task: TASK"
232
+ # question_template = "<image>\n <image>\n Given the observation images from the wrist camera mounted at <cam>[256,89,256,236,129,181]</cam> and the overhead camera mounted at <cam>[82,1,256,54,128,98]</cam>, please provide the action that the robot should take to finish the task: place a chess piece on the chessboar"
233
+
234
+ # cam_params xyz-rpy
235
+ wrist_cam_pose = [0.3618544138321802, -0.08323374464523976, 0.41759402329169787, 2.6584232953914344, 0.035482430406705845, 1.2906347836099603]
236
+ overhead_cam_pose = [-0.09877916942983442, -0.3919519409041736, 0.4780865865815033, -1.8237694898473762, -0.012183613523460979, -0.746683044221379]
237
+ cam_pose_list = [wrist_cam_pose, overhead_cam_pose]
238
+ for cam_pose in cam_pose_list:
239
+ cam_xyz_token = translation_action_discretizer.discretize(np.array(cam_pose[:3]))
240
+ cam_rpy_token = rotation_action_discretizer.discretize(np.array(cam_pose[3:6]))
241
+ cam_action_tokens = [cam_xyz_token[0], cam_xyz_token[1], cam_xyz_token[2], cam_rpy_token[0], cam_rpy_token[1], cam_rpy_token[2]]
242
+ cam_action_tokens_str = "<cam>[" + ",".join(map(str, cam_action_tokens)) + "]</cam>"
243
+ VQA_FORMAT = VQA_FORMAT.replace("CAM_PARAM", cam_action_tokens_str, 1)
244
+
245
+ # task lang
246
+ task = "Pick up the green object from the table and put it in the bowl"
247
+ VQA_FORMAT = VQA_FORMAT.replace("TASK", task)
248
+
249
+ img1 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_0.png"
250
+ img2 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_1.png"
251
+ images = [load_image(img1), load_image(img2)] # only need to return the PIL.Image object
252
+ response = pipe((VQA_FORMAT, images))
253
+ print(response.text)
254
+ print("gt: [124,137,104,126,130,129,233]")
255
+ action_list = np.array(ast.literal_eval(response.text))
256
+ xyz = translation_action_discretizer.undiscretize(action_list[:3])
257
+ rpy = rotation_action_discretizer.undiscretize(action_list[3:6])
258
+ openness = openness_action_discretizer.undiscretize(action_list[6])
259
+
260
+ print(f"xyz: {xyz}, rpy: {rpy}, openness: {openness}")
261
+
262
+ # srun --jobid 16125415 -n1 python lmdeploy_infer.py
263
+ """
264
+ # quant to 8bit
265
+ export HF_MODEL=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1
266
+ export WORK_DIR=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit
267
+
268
+ srun --jobid 16125415 -n1 lmdeploy lite auto_awq \
269
+ $HF_MODEL \
270
+ --calib-dataset 'ptb' \
271
+ --calib-samples 128 \
272
+ --calib-seqlen 2048 \
273
+ --w-bits 4 \
274
+ --w-group-size 128 \
275
+ --batch-size 16 \
276
+ --search-scale True \
277
+ --work-dir $WORK_DIR
278
+
279
+ # 8bit
280
+ srun --jobid 16125415 -n1 lmdeploy lite smooth_quant $HF_MODEL --work-dir $WORK_DIR
281
+
282
+ """
modeling_intern_vit.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ try: # v1
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_unpadded_qkvpacked_func
26
+ except: # v2
27
+ from flash_attn.flash_attn_interface import \
28
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
+
30
+ from flash_attn.bert_padding import pad_input, unpad_input
31
+
32
+ has_flash_attn = True
33
+ except:
34
+ print('FlashAttention is not installed.')
35
+ has_flash_attn = False
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ class FlashAttention(nn.Module):
41
+ """Implement the scaled dot product attention with softmax.
42
+ Arguments
43
+ ---------
44
+ softmax_scale: The temperature to use for the softmax attention.
45
+ (default: 1/sqrt(d_keys) where d_keys is computed at
46
+ runtime)
47
+ attention_dropout: The dropout rate to apply to the attention
48
+ (default: 0.0)
49
+ """
50
+
51
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
52
+ super().__init__()
53
+ self.softmax_scale = softmax_scale
54
+ self.dropout_p = attention_dropout
55
+
56
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
57
+ max_s=None, need_weights=False):
58
+ """Implements the multihead softmax attention.
59
+ Arguments
60
+ ---------
61
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
62
+ if unpadded: (nnz, 3, h, d)
63
+ key_padding_mask: a bool tensor of shape (B, S)
64
+ """
65
+ assert not need_weights
66
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
67
+ assert qkv.is_cuda
68
+
69
+ if cu_seqlens is None:
70
+ batch_size = qkv.shape[0]
71
+ seqlen = qkv.shape[1]
72
+ if key_padding_mask is None:
73
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
74
+ max_s = seqlen
75
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
+ device=qkv.device)
77
+ output = flash_attn_unpadded_qkvpacked_func(
78
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
+ softmax_scale=self.softmax_scale, causal=causal
80
+ )
81
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
82
+ else:
83
+ nheads = qkv.shape[-2]
84
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
88
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
+ softmax_scale=self.softmax_scale, causal=causal
90
+ )
91
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
92
+ indices, batch_size, seqlen),
93
+ 'b s (h d) -> b s h d', h=nheads)
94
+ else:
95
+ assert max_s is not None
96
+ output = flash_attn_unpadded_qkvpacked_func(
97
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
+ softmax_scale=self.softmax_scale, causal=causal
99
+ )
100
+
101
+ return output, None
102
+
103
+
104
+ class InternRMSNorm(nn.Module):
105
+ def __init__(self, hidden_size, eps=1e-6):
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ try:
119
+ from apex.normalization import FusedRMSNorm
120
+
121
+ InternRMSNorm = FusedRMSNorm # noqa
122
+
123
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
124
+ except ImportError:
125
+ # using the normal InternRMSNorm
126
+ pass
127
+ except Exception:
128
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
129
+ pass
130
+
131
+
132
+ NORM2FN = {
133
+ 'rms_norm': InternRMSNorm,
134
+ 'layer_norm': nn.LayerNorm,
135
+ }
136
+
137
+
138
+ class InternVisionEmbeddings(nn.Module):
139
+ def __init__(self, config: InternVisionConfig):
140
+ super().__init__()
141
+ self.config = config
142
+ self.embed_dim = config.hidden_size
143
+ self.image_size = config.image_size
144
+ self.patch_size = config.patch_size
145
+
146
+ self.class_embedding = nn.Parameter(
147
+ torch.randn(1, 1, self.embed_dim),
148
+ )
149
+
150
+ self.patch_embedding = nn.Conv2d(
151
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
152
+ )
153
+
154
+ self.num_patches = (self.image_size // self.patch_size) ** 2
155
+ self.num_positions = self.num_patches + 1
156
+
157
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
158
+
159
+ def _get_pos_embed(self, pos_embed, H, W):
160
+ target_dtype = pos_embed.dtype
161
+ pos_embed = pos_embed.float().reshape(
162
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
163
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
164
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
165
+ return pos_embed
166
+
167
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
168
+ target_dtype = self.patch_embedding.weight.dtype
169
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
170
+ batch_size, _, height, width = patch_embeds.shape
171
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
172
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
173
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
174
+ position_embedding = torch.cat([
175
+ self.position_embedding[:, :1, :],
176
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
177
+ ], dim=1)
178
+ embeddings = embeddings + position_embedding.to(target_dtype)
179
+ return embeddings
180
+
181
+
182
+ class InternAttention(nn.Module):
183
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
184
+
185
+ def __init__(self, config: InternVisionConfig):
186
+ super().__init__()
187
+ self.config = config
188
+ self.embed_dim = config.hidden_size
189
+ self.num_heads = config.num_attention_heads
190
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
191
+ if config.use_flash_attn and not has_flash_attn:
192
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
193
+ self.head_dim = self.embed_dim // self.num_heads
194
+ if self.head_dim * self.num_heads != self.embed_dim:
195
+ raise ValueError(
196
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
197
+ f' {self.num_heads}).'
198
+ )
199
+
200
+ self.scale = self.head_dim ** -0.5
201
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
202
+ self.attn_drop = nn.Dropout(config.attention_dropout)
203
+ self.proj_drop = nn.Dropout(config.dropout)
204
+
205
+ self.qk_normalization = config.qk_normalization
206
+
207
+ if self.qk_normalization:
208
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
209
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
210
+
211
+ if self.use_flash_attn:
212
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
213
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
214
+
215
+ def _naive_attn(self, x):
216
+ B, N, C = x.shape
217
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
218
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
219
+
220
+ if self.qk_normalization:
221
+ B_, H_, N_, D_ = q.shape
222
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
223
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
224
+
225
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
226
+ attn = attn.softmax(dim=-1)
227
+ attn = self.attn_drop(attn)
228
+
229
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
230
+ x = self.proj(x)
231
+ x = self.proj_drop(x)
232
+ return x
233
+
234
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
235
+ qkv = self.qkv(x)
236
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
237
+
238
+ if self.qk_normalization:
239
+ q, k, v = qkv.unbind(2)
240
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
241
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
242
+ qkv = torch.stack([q, k, v], dim=2)
243
+
244
+ context, _ = self.inner_attn(
245
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
246
+ )
247
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
248
+ outs = self.proj_drop(outs)
249
+ return outs
250
+
251
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
252
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
253
+ return x
254
+
255
+
256
+ class InternMLP(nn.Module):
257
+ def __init__(self, config: InternVisionConfig):
258
+ super().__init__()
259
+ self.config = config
260
+ self.act = ACT2FN[config.hidden_act]
261
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
262
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
263
+
264
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
265
+ hidden_states = self.fc1(hidden_states)
266
+ hidden_states = self.act(hidden_states)
267
+ hidden_states = self.fc2(hidden_states)
268
+ return hidden_states
269
+
270
+
271
+ class InternVisionEncoderLayer(nn.Module):
272
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
273
+ super().__init__()
274
+ self.embed_dim = config.hidden_size
275
+ self.intermediate_size = config.intermediate_size
276
+ self.norm_type = config.norm_type
277
+
278
+ self.attn = InternAttention(config)
279
+ self.mlp = InternMLP(config)
280
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
281
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
282
+
283
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
284
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
285
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
286
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
292
+ """
293
+ Args:
294
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
295
+ """
296
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
297
+
298
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
299
+
300
+ return hidden_states
301
+
302
+
303
+ class InternVisionEncoder(nn.Module):
304
+ """
305
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
306
+ [`InternEncoderLayer`].
307
+
308
+ Args:
309
+ config (`InternConfig`):
310
+ The corresponding vision configuration for the `InternEncoder`.
311
+ """
312
+
313
+ def __init__(self, config: InternVisionConfig):
314
+ super().__init__()
315
+ self.config = config
316
+ # stochastic depth decay rule
317
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
318
+ self.layers = nn.ModuleList([
319
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
320
+ self.gradient_checkpointing = True
321
+
322
+ def forward(
323
+ self,
324
+ inputs_embeds,
325
+ output_hidden_states: Optional[bool] = None,
326
+ return_dict: Optional[bool] = None,
327
+ ) -> Union[Tuple, BaseModelOutput]:
328
+ r"""
329
+ Args:
330
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
331
+ Embedded representation of the inputs. Should be float, not int tokens.
332
+ output_hidden_states (`bool`, *optional*):
333
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
334
+ for more detail.
335
+ return_dict (`bool`, *optional*):
336
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
337
+ """
338
+ output_hidden_states = (
339
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
340
+ )
341
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
342
+
343
+ encoder_states = () if output_hidden_states else None
344
+ hidden_states = inputs_embeds
345
+
346
+ for idx, encoder_layer in enumerate(self.layers):
347
+ if output_hidden_states:
348
+ encoder_states = encoder_states + (hidden_states,)
349
+ if self.gradient_checkpointing and self.training:
350
+ layer_outputs = torch.utils.checkpoint.checkpoint(
351
+ encoder_layer,
352
+ hidden_states)
353
+ else:
354
+ layer_outputs = encoder_layer(
355
+ hidden_states,
356
+ )
357
+ hidden_states = layer_outputs
358
+
359
+ if output_hidden_states:
360
+ encoder_states = encoder_states + (hidden_states,)
361
+
362
+ if not return_dict:
363
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
364
+ return BaseModelOutput(
365
+ last_hidden_state=hidden_states, hidden_states=encoder_states
366
+ )
367
+
368
+
369
+ class InternVisionModel(PreTrainedModel):
370
+ main_input_name = 'pixel_values'
371
+ _supports_flash_attn_2 = True
372
+ config_class = InternVisionConfig
373
+ _no_split_modules = ['InternVisionEncoderLayer']
374
+
375
+ def __init__(self, config: InternVisionConfig):
376
+ super().__init__(config)
377
+ self.config = config
378
+
379
+ self.embeddings = InternVisionEmbeddings(config)
380
+ self.encoder = InternVisionEncoder(config)
381
+
382
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
383
+ pos_emb = self.embeddings.position_embedding
384
+ _, num_positions, embed_dim = pos_emb.shape
385
+ cls_emb = pos_emb[:, :1, :]
386
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
387
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
388
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
389
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
390
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
391
+ self.embeddings.image_size = new_size
392
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
393
+
394
+ def get_input_embeddings(self):
395
+ return self.embeddings
396
+
397
+ def forward(
398
+ self,
399
+ pixel_values: Optional[torch.FloatTensor] = None,
400
+ output_hidden_states: Optional[bool] = None,
401
+ return_dict: Optional[bool] = None,
402
+ pixel_embeds: Optional[torch.FloatTensor] = None,
403
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
404
+ output_hidden_states = (
405
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
406
+ )
407
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
408
+
409
+ if pixel_values is None and pixel_embeds is None:
410
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
411
+
412
+ if pixel_embeds is not None:
413
+ hidden_states = pixel_embeds
414
+ else:
415
+ if len(pixel_values.shape) == 4:
416
+ hidden_states = self.embeddings(pixel_values)
417
+ else:
418
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
419
+ encoder_outputs = self.encoder(
420
+ inputs_embeds=hidden_states,
421
+ output_hidden_states=output_hidden_states,
422
+ return_dict=return_dict,
423
+ )
424
+ last_hidden_state = encoder_outputs.last_hidden_state
425
+ pooled_output = last_hidden_state[:, 0, :]
426
+
427
+ if not return_dict:
428
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
429
+
430
+ return BaseModelOutputWithPooling(
431
+ last_hidden_state=last_hidden_state,
432
+ pooler_output=pooled_output,
433
+ hidden_states=encoder_outputs.hidden_states,
434
+ attentions=encoder_outputs.attentions,
435
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1940 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from einops import rearrange
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutputWithPast,
35
+ TokenClassifierOutput)
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
38
+ from transformers.utils import (add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10, logging,
42
+ replace_return_docstrings)
43
+
44
+ from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules
45
+
46
+ try:
47
+ from transformers.generation.streamers import BaseStreamer
48
+ except Exception:
49
+ BaseStreamer = None
50
+
51
+ from .configuration_internlm2 import InternLM2Config
52
+
53
+ if is_flash_attn_2_available():
54
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
55
+ from flash_attn.bert_padding import (index_first_axis, pad_input,
56
+ unpad_input)
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = 'InternLM2Config'
61
+
62
+
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0,
68
+ dtype=torch.int32), (1, 0)) # pylint: disable=E1102
69
+ return (
70
+ indices,
71
+ cu_seqlens,
72
+ max_seqlen_in_batch,
73
+ )
74
+
75
+
76
+ class InternLM2RMSNorm(nn.Module):
77
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
78
+
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ hidden_states = hidden_states.to(torch.float32)
87
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance +
89
+ self.variance_epsilon)
90
+ return self.weight * hidden_states.to(input_dtype)
91
+
92
+
93
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
94
+
95
+
96
+ class InternLM2RotaryEmbedding(nn.Module):
97
+ """Rotary Position Embedding for the InternLM2 model.
98
+
99
+ Credits to the Reddit user /u/lucidrains.
100
+ """
101
+
102
+ def __init__(self,
103
+ dim,
104
+ max_position_embeddings=2048,
105
+ base=10000,
106
+ device=None,
107
+ scaling_factor=1.0):
108
+ super().__init__()
109
+ self.scaling_factor = scaling_factor
110
+ self.dim = dim
111
+ self.max_position_embeddings = max_position_embeddings
112
+ self.base = base
113
+ inv_freq = 1.0 / (self.base**(torch.arange(
114
+ 0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
115
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
116
+ # For BC we register cos and sin cached
117
+ self.max_seq_len_cached = max_position_embeddings
118
+
119
+ @torch.no_grad()
120
+ def forward(self, x, position_ids):
121
+ # x: [bs, num_attention_heads, seq_len, head_size]
122
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
123
+ position_ids.shape[0], -1, 1)
124
+ position_ids_expanded = position_ids[:, None, :].float()
125
+ # Force float32 since bfloat16 loses precision on long contexts
126
+ # See https://github.com/huggingface/transformers/pull/29285
127
+ device_type = x.device.type
128
+ device_type = device_type if isinstance(
129
+ device_type, str) and device_type != 'mps' else 'cpu'
130
+ with torch.autocast(device_type=device_type, enabled=False):
131
+ freqs = (inv_freq_expanded.float()
132
+ @ position_ids_expanded.float()).transpose(1, 2)
133
+ emb = torch.cat((freqs, freqs), dim=-1)
134
+ cos = emb.cos()
135
+ sin = emb.sin()
136
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
137
+
138
+
139
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
140
+ """InternLM2RotaryEmbedding extended with linear scaling.
141
+
142
+ Credits to the Reddit user /u/kaiokendev
143
+ """
144
+
145
+ def forward(self, x, position_ids):
146
+ # difference to the original RoPE: a scaling factor is applied to the position ids
147
+ position_ids = position_ids.float() / self.scaling_factor
148
+ cos, sin = super().forward(x, position_ids)
149
+ return cos, sin
150
+
151
+
152
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
153
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
154
+
155
+ Credits to the Reddit users /u/bloc97 and /u/emozilla
156
+ """
157
+
158
+ def forward(self, x, position_ids):
159
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
160
+ seq_len = torch.max(position_ids) + 1
161
+ if seq_len > self.max_position_embeddings:
162
+ base = self.base * ((self.scaling_factor * seq_len /
163
+ self.max_position_embeddings) -
164
+ (self.scaling_factor - 1))**(self.dim /
165
+ (self.dim - 2))
166
+ inv_freq = 1.0 / (base**(torch.arange(
167
+ 0, self.dim, 2, dtype=torch.int64).float().to(x.device) /
168
+ self.dim))
169
+ self.register_buffer(
170
+ 'inv_freq', inv_freq,
171
+ persistent=False) # TODO joao: this may break with compilation
172
+
173
+ cos, sin = super().forward(x, position_ids)
174
+ return cos, sin
175
+
176
+
177
+ def rotate_half(x):
178
+ """Rotates half the hidden dims of the input."""
179
+ x1 = x[..., :x.shape[-1] // 2]
180
+ x2 = x[..., x.shape[-1] // 2:]
181
+ return torch.cat((-x2, x1), dim=-1)
182
+
183
+
184
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
185
+ """Applies Rotary Position Embedding to the query and key tensors.
186
+
187
+ Args:
188
+ q (`torch.Tensor`): The query tensor.
189
+ k (`torch.Tensor`): The key tensor.
190
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
191
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
192
+ position_ids (`torch.Tensor`, *optional*):
193
+ Deprecated and unused.
194
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
195
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
196
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
197
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
198
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
199
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
200
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
201
+ Returns:
202
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
203
+ """
204
+ cos = cos.unsqueeze(unsqueeze_dim)
205
+ sin = sin.unsqueeze(unsqueeze_dim)
206
+ q_embed = (q * cos) + (rotate_half(q) * sin)
207
+ k_embed = (k * cos) + (rotate_half(k) * sin)
208
+ return q_embed, k_embed
209
+
210
+
211
+ class InternLM2MLP(nn.Module):
212
+ """MLP for InternLM2 model."""
213
+
214
+ def __init__(self, config):
215
+ super().__init__()
216
+ self.config = config
217
+ self.hidden_size = config.hidden_size
218
+ self.intermediate_size = config.intermediate_size
219
+ self.w1 = nn.Linear(self.hidden_size,
220
+ self.intermediate_size,
221
+ bias=False)
222
+ self.w3 = nn.Linear(self.hidden_size,
223
+ self.intermediate_size,
224
+ bias=False)
225
+ self.w2 = nn.Linear(self.intermediate_size,
226
+ self.hidden_size,
227
+ bias=False)
228
+ self.act_fn = ACT2FN[config.hidden_act]
229
+
230
+ def forward(self, x):
231
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
232
+
233
+ return down_proj
234
+
235
+
236
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
237
+ """This is the equivalent of torch.repeat_interleave(x, dim=1,
238
+ repeats=n_rep).
239
+
240
+ The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
241
+ (batch, num_attention_heads, seqlen, head_dim)
242
+ """
243
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
244
+ if n_rep == 1:
245
+ return hidden_states
246
+ hidden_states = hidden_states[:, :,
247
+ None, :, :].expand(batch,
248
+ num_key_value_heads,
249
+ n_rep, slen, head_dim)
250
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
251
+ head_dim)
252
+
253
+
254
+ class InternLM2Attention(nn.Module):
255
+ """Multi-headed attention from 'Attention Is All You Need' paper."""
256
+
257
+ def __init__(self,
258
+ config: InternLM2Config,
259
+ layer_idx: Optional[int] = None):
260
+ super().__init__()
261
+ self.config = config
262
+ self.layer_idx = layer_idx
263
+ if layer_idx is None:
264
+ logger.warning_once(
265
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
266
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
267
+ 'when creating this class.')
268
+
269
+ self.hidden_size = config.hidden_size
270
+ self.num_heads = config.num_attention_heads
271
+ self.head_dim = self.hidden_size // self.num_heads
272
+ self.num_key_value_heads = config.num_key_value_heads
273
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
274
+ self.max_position_embeddings = config.max_position_embeddings
275
+ self.rope_theta = config.rope_theta
276
+ self.is_causal = True
277
+
278
+ if (self.head_dim * self.num_heads) != self.hidden_size:
279
+ raise ValueError(
280
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
281
+ f' and `num_heads`: {self.num_heads}).')
282
+
283
+ self.wqkv = nn.Linear(
284
+ self.hidden_size,
285
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
286
+ bias=config.bias,
287
+ )
288
+ self.wo = nn.Linear(self.num_heads * self.head_dim,
289
+ self.hidden_size,
290
+ bias=config.bias)
291
+
292
+ self._init_rope()
293
+
294
+ def _init_rope(self):
295
+ if self.config.rope_scaling is None:
296
+ self.rotary_emb = InternLM2RotaryEmbedding(
297
+ self.head_dim,
298
+ max_position_embeddings=self.max_position_embeddings,
299
+ base=self.rope_theta,
300
+ )
301
+ else:
302
+ scaling_type = self.config.rope_scaling['type']
303
+ scaling_factor = self.config.rope_scaling['factor']
304
+ if scaling_type == 'linear':
305
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
306
+ self.head_dim,
307
+ max_position_embeddings=self.max_position_embeddings,
308
+ scaling_factor=scaling_factor,
309
+ base=self.rope_theta,
310
+ )
311
+ elif scaling_type == 'dynamic':
312
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ scaling_factor=scaling_factor,
316
+ base=self.rope_theta,
317
+ )
318
+ else:
319
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
320
+
321
+ def forward(
322
+ self,
323
+ hidden_states: torch.Tensor,
324
+ attention_mask: Optional[torch.Tensor] = None,
325
+ position_ids: Optional[torch.LongTensor] = None,
326
+ past_key_value: Optional[Cache] = None,
327
+ output_attentions: bool = False,
328
+ use_cache: bool = False, # pylint: disable=unused-argument
329
+ cache_position: Optional[torch.LongTensor] = None,
330
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
331
+ Optional[Tuple[torch.Tensor]]]:
332
+ bsz, q_len, _ = hidden_states.size()
333
+
334
+ if self.config.pretraining_tp > 1:
335
+ # split qkv_states by tp size
336
+ key_value_slicing = (self.num_key_value_heads *
337
+ self.head_dim) // self.config.pretraining_tp
338
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
339
+ qkv_states = torch.cat(
340
+ [
341
+ F.linear(hidden_states, qkv_slice)
342
+ for qkv_slice in qkv_slices
343
+ ],
344
+ dim=-1 # pylint: disable=E1102
345
+ )
346
+ else:
347
+ qkv_states = self.wqkv(hidden_states)
348
+
349
+ qkv_states = rearrange(
350
+ qkv_states,
351
+ 'b q (h gs d) -> b q h gs d',
352
+ gs=2 + self.num_key_value_groups,
353
+ d=self.head_dim,
354
+ )
355
+
356
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
357
+ query_states = rearrange(query_states,
358
+ 'b q h gs d -> b q (h gs) d').transpose(1, 2)
359
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
360
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
361
+
362
+ cos, sin = self.rotary_emb(value_states, position_ids)
363
+ query_states, key_states = apply_rotary_pos_emb(
364
+ query_states, key_states, cos, sin, position_ids)
365
+
366
+ if past_key_value is not None:
367
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
368
+ cache_kwargs = {
369
+ 'sin': sin,
370
+ 'cos': cos,
371
+ 'cache_position': cache_position
372
+ }
373
+ key_states, value_states = past_key_value.update(
374
+ key_states, value_states, self.layer_idx, cache_kwargs)
375
+
376
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
377
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
378
+
379
+ attn_weights = torch.matmul(query_states, key_states.transpose(
380
+ 2, 3)) / math.sqrt(self.head_dim)
381
+
382
+ if attention_mask is not None: # no matter the length, we just slice it
383
+ causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
384
+ attn_weights = attn_weights + causal_mask
385
+
386
+ # upcast attention to fp32
387
+ attn_weights = nn.functional.softmax(attn_weights,
388
+ dim=-1,
389
+ dtype=torch.float32).to(
390
+ query_states.dtype)
391
+ attn_output = torch.matmul(attn_weights, value_states)
392
+
393
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
394
+ raise ValueError(
395
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
396
+ f' {attn_output.size()}')
397
+
398
+ attn_output = attn_output.transpose(1, 2).contiguous()
399
+
400
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
401
+
402
+ if self.config.pretraining_tp > 1:
403
+ attn_output = attn_output.split(self.hidden_size //
404
+ self.config.pretraining_tp,
405
+ dim=2)
406
+ o_proj_slices = self.wo.weight.split(self.hidden_size //
407
+ self.config.pretraining_tp,
408
+ dim=1)
409
+ attn_output = sum([
410
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
411
+ for i in range(self.config.pretraining_tp)
412
+ ])
413
+ else:
414
+ attn_output = self.wo(attn_output)
415
+
416
+ if not output_attentions:
417
+ attn_weights = None
418
+
419
+ return attn_output, attn_weights, past_key_value
420
+
421
+
422
+ class InternLM2FlashAttention2(InternLM2Attention):
423
+ """InternLM2 flash attention module.
424
+
425
+ This module inherits from `InternLM2Attention` as the weights of the module
426
+ stays untouched. The only required change would be on the forward pass
427
+ where it needs to correctly call the public API of flash attention and deal
428
+ with padding tokens in case the input contains any of them.
429
+ """
430
+
431
+ def __init__(self, *args, **kwargs):
432
+ super().__init__(*args, **kwargs)
433
+
434
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
435
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment,
436
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
437
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
438
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
439
+ # produces a wrong mask (top-left).
440
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10(
441
+ )
442
+
443
+ def forward(
444
+ self,
445
+ hidden_states: torch.Tensor,
446
+ attention_mask: Optional[torch.LongTensor] = None,
447
+ position_ids: Optional[torch.LongTensor] = None,
448
+ past_key_value: Optional[Cache] = None,
449
+ output_attentions: bool = False,
450
+ use_cache: bool = False,
451
+ cache_position: Optional[torch.LongTensor] = None,
452
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
453
+ Optional[Tuple[torch.Tensor]]]:
454
+ if isinstance(past_key_value, StaticCache):
455
+ raise ValueError(
456
+ '`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` '
457
+ 'make sure to use `sdpa` in the mean time, and open an issue at '
458
+ 'https://github.com/huggingface/transformers')
459
+
460
+ output_attentions = False
461
+
462
+ bsz, q_len, _ = hidden_states.size()
463
+
464
+ qkv_states = self.wqkv(hidden_states)
465
+
466
+ qkv_states = rearrange(
467
+ qkv_states,
468
+ 'b q (h gs d) -> b q h gs d',
469
+ gs=2 + self.num_key_value_groups,
470
+ d=self.head_dim,
471
+ )
472
+
473
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
474
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
475
+ key_states = qkv_states[..., -2, :]
476
+ value_states = qkv_states[..., -1, :]
477
+
478
+ query_states = query_states.transpose(1, 2)
479
+ key_states = key_states.transpose(1, 2)
480
+ value_states = value_states.transpose(1, 2)
481
+
482
+ cos, sin = self.rotary_emb(value_states, position_ids)
483
+ query_states, key_states = apply_rotary_pos_emb(
484
+ query_states, key_states, cos, sin)
485
+
486
+ if past_key_value is not None:
487
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
488
+ cache_kwargs = {
489
+ 'sin': sin,
490
+ 'cos': cos,
491
+ 'cache_position': cache_position
492
+ }
493
+ key_states, value_states = past_key_value.update(
494
+ key_states, value_states, self.layer_idx, cache_kwargs)
495
+
496
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
497
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
498
+ # to be able to avoid many of these transpose/reshape/view.
499
+ query_states = query_states.transpose(1, 2)
500
+ key_states = key_states.transpose(1, 2)
501
+ value_states = value_states.transpose(1, 2)
502
+
503
+ # dropout_rate = self.attention_dropout if self.training else 0.0
504
+ dropout_rate = 0.0
505
+
506
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
507
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
508
+ # cast them back in the correct dtype just to be sure everything works as expected.
509
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
510
+ # in fp32. (InternLM2RMSNorm handles it correctly)
511
+
512
+ input_dtype = query_states.dtype
513
+ if input_dtype == torch.float32:
514
+ if torch.is_autocast_enabled():
515
+ target_dtype = torch.get_autocast_gpu_dtype()
516
+ # Handle the case where the model is quantized
517
+ elif hasattr(self.config, '_pre_quantization_dtype'):
518
+ target_dtype = self.config._pre_quantization_dtype
519
+ else:
520
+ target_dtype = self.wqkv.weight.dtype
521
+
522
+ logger.warning_once(
523
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
524
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
525
+ f' {target_dtype}.')
526
+
527
+ query_states = query_states.to(target_dtype)
528
+ key_states = key_states.to(target_dtype)
529
+ value_states = value_states.to(target_dtype)
530
+
531
+ attn_output = self._flash_attention_forward(query_states,
532
+ key_states,
533
+ value_states,
534
+ attention_mask,
535
+ q_len,
536
+ dropout=dropout_rate)
537
+
538
+ attn_output = attn_output.reshape(bsz, q_len,
539
+ self.hidden_size).contiguous()
540
+ attn_output = self.wo(attn_output)
541
+
542
+ if not output_attentions:
543
+ attn_weights = None
544
+
545
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
546
+
547
+ def _flash_attention_forward(self,
548
+ query_states,
549
+ key_states,
550
+ value_states,
551
+ attention_mask,
552
+ query_length,
553
+ dropout=0.0,
554
+ softmax_scale=None):
555
+ """
556
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
557
+ first unpad the input, then computes the attention scores and pad the final attention scores.
558
+
559
+ Args:
560
+ query_states (`torch.Tensor`):
561
+ Input query states to be passed to Flash Attention API
562
+ key_states (`torch.Tensor`):
563
+ Input key states to be passed to Flash Attention API
564
+ value_states (`torch.Tensor`):
565
+ Input value states to be passed to Flash Attention API
566
+ attention_mask (`torch.Tensor`):
567
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
568
+ position of padding tokens and 1 for the position of non-padding tokens.
569
+ dropout (`float`):
570
+ Attention dropout
571
+ softmax_scale (`float`, *optional*):
572
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
573
+ """
574
+ if not self._flash_attn_uses_top_left_mask:
575
+ causal = self.is_causal
576
+ else:
577
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
578
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
579
+ causal = self.is_causal and query_length != 1
580
+
581
+ # Contains at least one padding token in the sequence
582
+ if attention_mask is not None:
583
+ batch_size = query_states.shape[0]
584
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
585
+ query_states, key_states, value_states, attention_mask,
586
+ query_length)
587
+
588
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
589
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
590
+
591
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
592
+ query_states,
593
+ key_states,
594
+ value_states,
595
+ cu_seqlens_q=cu_seqlens_q,
596
+ cu_seqlens_k=cu_seqlens_k,
597
+ max_seqlen_q=max_seqlen_in_batch_q,
598
+ max_seqlen_k=max_seqlen_in_batch_k,
599
+ dropout_p=dropout,
600
+ softmax_scale=softmax_scale,
601
+ causal=causal,
602
+ )
603
+
604
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size,
605
+ query_length) # pylint: disable=E0606
606
+ else:
607
+ attn_output = flash_attn_func( # pylint: disable=E0606
608
+ query_states,
609
+ key_states,
610
+ value_states,
611
+ dropout,
612
+ softmax_scale=softmax_scale,
613
+ causal=causal)
614
+
615
+ return attn_output
616
+
617
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask,
618
+ query_length):
619
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
620
+ attention_mask)
621
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
622
+
623
+ key_layer = index_first_axis( # pylint: disable=E0606
624
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
625
+ head_dim), indices_k)
626
+ value_layer = index_first_axis( # pylint: disable=E0606
627
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
628
+ head_dim), indices_k)
629
+ if query_length == kv_seq_len:
630
+ query_layer = index_first_axis( # pylint: disable=E0606
631
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
632
+ head_dim), indices_k)
633
+ cu_seqlens_q = cu_seqlens_k
634
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
635
+ indices_q = indices_k
636
+ elif query_length == 1:
637
+ max_seqlen_in_batch_q = 1
638
+ cu_seqlens_q = torch.arange(
639
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
640
+ ) # There is a memcpy here, that is very bad.
641
+ indices_q = cu_seqlens_q[:-1]
642
+ query_layer = query_layer.squeeze(1)
643
+ else:
644
+ # The -q_len: slice assumes left padding.
645
+ attention_mask = attention_mask[:, -query_length:]
646
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
647
+ query_layer, attention_mask)
648
+
649
+ return (
650
+ query_layer,
651
+ key_layer,
652
+ value_layer,
653
+ indices_q,
654
+ (cu_seqlens_q, cu_seqlens_k),
655
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
656
+ )
657
+
658
+
659
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
660
+ class InternLM2SdpaAttention(InternLM2Attention):
661
+ """InternLM2 attention module using
662
+ torch.nn.functional.scaled_dot_product_attention.
663
+
664
+ This module inherits from `InternLM2Attention` as the weights of the module
665
+ stays untouched. The only changes are on the forward pass to adapt to SDPA
666
+ API.
667
+ """
668
+
669
+ # Adapted from InternLM2Attention.forward
670
+ def forward(
671
+ self,
672
+ hidden_states: torch.Tensor,
673
+ attention_mask: Optional[torch.Tensor] = None,
674
+ position_ids: Optional[torch.LongTensor] = None,
675
+ past_key_value: Optional[Cache] = None,
676
+ output_attentions: bool = False,
677
+ use_cache: bool = False,
678
+ cache_position: Optional[torch.LongTensor] = None,
679
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
680
+ Optional[Tuple[torch.Tensor]]]:
681
+ if output_attentions:
682
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
683
+ # once this is implemented.
684
+ logger.warning_once(
685
+ 'InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` '
686
+ 'does not support `output_attentions=True`. Falling back to the manual attention implementation, '
687
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. '
688
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
689
+ )
690
+ return super().forward(
691
+ hidden_states=hidden_states,
692
+ attention_mask=attention_mask,
693
+ position_ids=position_ids,
694
+ past_key_value=past_key_value,
695
+ output_attentions=output_attentions,
696
+ use_cache=use_cache,
697
+ cache_position=cache_position,
698
+ )
699
+
700
+ bsz, q_len, _ = hidden_states.size()
701
+
702
+ qkv_states = self.wqkv(hidden_states)
703
+
704
+ qkv_states = rearrange(
705
+ qkv_states,
706
+ 'b q (h gs d) -> b q h gs d',
707
+ gs=2 + self.num_key_value_groups,
708
+ d=self.head_dim,
709
+ )
710
+
711
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
712
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
713
+ key_states = qkv_states[..., -2, :]
714
+ value_states = qkv_states[..., -1, :]
715
+
716
+ query_states = query_states.transpose(1, 2)
717
+ key_states = key_states.transpose(1, 2)
718
+ value_states = value_states.transpose(1, 2)
719
+
720
+ cos, sin = self.rotary_emb(value_states, position_ids)
721
+ query_states, key_states = apply_rotary_pos_emb(
722
+ query_states, key_states, cos, sin)
723
+
724
+ if past_key_value is not None:
725
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
726
+ cache_kwargs = {
727
+ 'sin': sin,
728
+ 'cos': cos,
729
+ 'cache_position': cache_position
730
+ }
731
+ key_states, value_states = past_key_value.update(
732
+ key_states, value_states, self.layer_idx, cache_kwargs)
733
+
734
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
735
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
736
+
737
+ causal_mask = attention_mask
738
+ if attention_mask is not None:
739
+ causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]
740
+
741
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
742
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
743
+ if query_states.device.type == 'cuda' and causal_mask is not None:
744
+ query_states = query_states.contiguous()
745
+ key_states = key_states.contiguous()
746
+ value_states = value_states.contiguous()
747
+
748
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
749
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
750
+ # options. An inline conditional prevents dynamic shapes from compiling.
751
+ is_causal = bool(causal_mask is None and q_len > 1)
752
+
753
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
754
+ query_states,
755
+ key_states,
756
+ value_states,
757
+ attn_mask=causal_mask,
758
+ dropout_p=0.0,
759
+ is_causal=is_causal,
760
+ )
761
+
762
+ attn_output = attn_output.transpose(1, 2).contiguous()
763
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
764
+
765
+ attn_output = self.wo(attn_output)
766
+
767
+ return attn_output, None, past_key_value
768
+
769
+
770
+ INTERNLM2_ATTENTION_CLASSES = {
771
+ 'eager': InternLM2Attention,
772
+ 'flash_attention_2': InternLM2FlashAttention2,
773
+ 'sdpa': InternLM2SdpaAttention,
774
+ }
775
+
776
+
777
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
778
+ class InternLM2DecoderLayer(nn.Module):
779
+ """InternLM2 Decoder Layer.
780
+
781
+ This module is a single layer of the InternLM2 model.
782
+ """
783
+
784
+ def __init__(self, config: InternLM2Config, layer_idx: int):
785
+ super().__init__()
786
+ self.hidden_size = config.hidden_size
787
+ self.layer_idx = layer_idx
788
+
789
+ self.attention = INTERNLM2_ATTENTION_CLASSES[
790
+ config.attn_implementation](config=config, layer_idx=layer_idx)
791
+
792
+ self.feed_forward = InternLM2MLP(config)
793
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size,
794
+ eps=config.rms_norm_eps)
795
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size,
796
+ eps=config.rms_norm_eps)
797
+
798
+ def forward(
799
+ self,
800
+ hidden_states: torch.Tensor,
801
+ attention_mask: Optional[torch.Tensor] = None,
802
+ position_ids: Optional[torch.LongTensor] = None,
803
+ past_key_value: Optional[Cache] = None,
804
+ output_attentions: Optional[bool] = False,
805
+ use_cache: Optional[bool] = False,
806
+ cache_position: Optional[torch.LongTensor] = None,
807
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
808
+ torch.FloatTensor]]]:
809
+ """
810
+ Args:
811
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
812
+ attention_mask (`torch.FloatTensor`, *optional*):
813
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
814
+ query_sequence_length, key_sequence_length)` if default attention is used.
815
+ output_attentions (`bool`, *optional*):
816
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
817
+ returned tensors for more detail.
818
+ use_cache (`bool`, *optional*):
819
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
820
+ (see `past_key_values`).
821
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
822
+ """
823
+ residual = hidden_states
824
+
825
+ hidden_states = self.attention_norm(hidden_states)
826
+
827
+ # Self Attention
828
+ hidden_states, self_attn_weights, present_key_value = self.attention(
829
+ hidden_states=hidden_states,
830
+ attention_mask=attention_mask,
831
+ position_ids=position_ids,
832
+ past_key_value=past_key_value,
833
+ output_attentions=output_attentions,
834
+ use_cache=use_cache,
835
+ cache_position=cache_position,
836
+ )
837
+ hidden_states = residual + hidden_states
838
+
839
+ # Fully Connected
840
+ residual = hidden_states
841
+ hidden_states = self.ffn_norm(hidden_states)
842
+ hidden_states = self.feed_forward(hidden_states)
843
+ hidden_states = residual + hidden_states
844
+
845
+ outputs = (hidden_states, )
846
+
847
+ if output_attentions:
848
+ outputs += (self_attn_weights, )
849
+
850
+ if use_cache:
851
+ outputs += (present_key_value, )
852
+
853
+ return outputs
854
+
855
+
856
+ InternLM2_START_DOCSTRING = r"""
857
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
858
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
859
+ etc.)
860
+
861
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
862
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
863
+ and behavior.
864
+
865
+ Parameters:
866
+ config ([`InternLM2Config`]):
867
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
868
+ load the weights associated with the model, only the configuration. Check out the
869
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
870
+ """
871
+
872
+
873
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
874
+ @add_start_docstrings(
875
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
876
+ InternLM2_START_DOCSTRING,
877
+ )
878
+ class InternLM2PreTrainedModel(PreTrainedModel):
879
+ """InternLM2 pretraiend model's base class."""
880
+
881
+ config_class = InternLM2Config
882
+ base_model_prefix = 'model'
883
+ supports_gradient_checkpointing = True
884
+ _no_split_modules = ['InternLM2DecoderLayer']
885
+ _skip_keys_device_placement = ['past_key_values']
886
+ _supports_flash_attn_2 = True
887
+ _supports_sdpa = True
888
+ _supports_cache_class = True
889
+ _supports_quantized_cache = True
890
+ _supports_static_cache = True
891
+
892
+ def _init_weights(self, module):
893
+ std = self.config.initializer_range
894
+ if isinstance(module, nn.Linear):
895
+ module.weight.data.normal_(mean=0.0, std=std)
896
+ if module.bias is not None:
897
+ module.bias.data.zero_()
898
+ elif isinstance(module, nn.Embedding):
899
+ module.weight.data.normal_(mean=0.0, std=std)
900
+ if module.padding_idx is not None:
901
+ module.weight.data[module.padding_idx].zero_()
902
+
903
+
904
+ InternLM2_INPUTS_DOCSTRING = r"""
905
+ Args:
906
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
907
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
908
+ it.
909
+
910
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
911
+ [`PreTrainedTokenizer.__call__`] for details.
912
+
913
+ [What are input IDs?](../glossary#input-ids)
914
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
915
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
916
+
917
+ - 1 for tokens that are **not masked**,
918
+ - 0 for tokens that are **masked**.
919
+
920
+ [What are attention masks?](../glossary#attention-mask)
921
+
922
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
923
+ [`PreTrainedTokenizer.__call__`] for details.
924
+
925
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
926
+ `past_key_values`).
927
+
928
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
929
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
930
+ information on the default strategy.
931
+
932
+ - 1 indicates the head is **not masked**,
933
+ - 0 indicates the head is **masked**.
934
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
935
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
936
+ config.n_positions - 1]`.
937
+
938
+ [What are position IDs?](../glossary#position-ids)
939
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
940
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
941
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
942
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
943
+
944
+ Two formats are allowed:
945
+ - a [`~cache_utils.Cache`] instance;
946
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
947
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
948
+ cache format.
949
+
950
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
951
+ legacy cache format will be returned.
952
+
953
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
954
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
955
+ of shape `(batch_size, sequence_length)`.
956
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
957
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
958
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
959
+ model's internal embedding lookup matrix.
960
+ use_cache (`bool`, *optional*):
961
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
962
+ `past_key_values`).
963
+ output_attentions (`bool`, *optional*):
964
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
965
+ tensors for more detail.
966
+ output_hidden_states (`bool`, *optional*):
967
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
968
+ more detail.
969
+ return_dict (`bool`, *optional*):
970
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
971
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
972
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
973
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
974
+ the complete sequence length.
975
+ """
976
+
977
+
978
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
979
+ @add_start_docstrings(
980
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
981
+ InternLM2_START_DOCSTRING,
982
+ )
983
+ class InternLM2Model(InternLM2PreTrainedModel):
984
+ """Transformer decoder consisting of *config.num_hidden_layers* layers.
985
+ Each layer is a [`InternLM2DecoderLayer`]
986
+
987
+ Args:
988
+ config: InternLM2Config
989
+ """
990
+
991
+ _auto_class = 'AutoModel'
992
+
993
+ def __init__(self, config: InternLM2Config):
994
+ super().__init__(config)
995
+ self.padding_idx = config.pad_token_id
996
+ self.vocab_size = config.vocab_size
997
+ self.config = config
998
+
999
+ self.tok_embeddings = nn.Embedding(config.vocab_size,
1000
+ config.hidden_size,
1001
+ self.padding_idx)
1002
+
1003
+ self.layers = nn.ModuleList([
1004
+ InternLM2DecoderLayer(config, layer_idx)
1005
+ for layer_idx in range(config.num_hidden_layers)
1006
+ ])
1007
+ self.norm = InternLM2RMSNorm(config.hidden_size,
1008
+ eps=config.rms_norm_eps)
1009
+
1010
+ self.gradient_checkpointing = False
1011
+ # Initialize weights and apply final processing
1012
+ self.post_init()
1013
+
1014
+ def get_input_embeddings(self):
1015
+ return self.tok_embeddings
1016
+
1017
+ def set_input_embeddings(self, value):
1018
+ self.tok_embeddings = value
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ def forward(
1022
+ self,
1023
+ input_ids: torch.LongTensor = None,
1024
+ attention_mask: Optional[torch.Tensor] = None,
1025
+ position_ids: Optional[torch.LongTensor] = None,
1026
+ past_key_values: Optional[Union[Cache,
1027
+ List[torch.FloatTensor]]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ use_cache: Optional[bool] = None,
1030
+ output_attentions: Optional[bool] = None,
1031
+ output_hidden_states: Optional[bool] = None,
1032
+ return_dict: Optional[bool] = None,
1033
+ cache_position: Optional[torch.LongTensor] = None,
1034
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1035
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1036
+ output_hidden_states = (output_hidden_states
1037
+ if output_hidden_states is not None else
1038
+ self.config.output_hidden_states)
1039
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1040
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1041
+
1042
+ if (input_ids is None) ^ (inputs_embeds is not None):
1043
+ raise ValueError(
1044
+ 'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
1045
+ )
1046
+
1047
+ if self.gradient_checkpointing and self.training and use_cache:
1048
+ logger.warning_once(
1049
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
1050
+ )
1051
+ use_cache = False
1052
+
1053
+ if inputs_embeds is None:
1054
+ inputs_embeds = self.tok_embeddings(input_ids)
1055
+
1056
+ return_legacy_cache = False
1057
+ if use_cache and not isinstance(
1058
+ past_key_values,
1059
+ Cache): # kept for BC (non `Cache` `past_key_values` inputs)
1060
+ return_legacy_cache = True
1061
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1062
+
1063
+ if cache_position is None:
1064
+ past_seen_tokens = past_key_values.get_seq_length(
1065
+ ) if past_key_values is not None else 0
1066
+ cache_position = torch.arange(past_seen_tokens,
1067
+ past_seen_tokens +
1068
+ inputs_embeds.shape[1],
1069
+ device=inputs_embeds.device)
1070
+ if position_ids is None:
1071
+ position_ids = cache_position.unsqueeze(0)
1072
+
1073
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
1074
+ cache_position, past_key_values,
1075
+ output_attentions)
1076
+
1077
+ # embed positions
1078
+ hidden_states = inputs_embeds
1079
+
1080
+ # decoder layers
1081
+ all_hidden_states = () if output_hidden_states else None
1082
+ all_self_attns = () if output_attentions else None
1083
+ next_decoder_cache = None
1084
+
1085
+ for decoder_layer in self.layers:
1086
+ if output_hidden_states:
1087
+ all_hidden_states += (hidden_states, )
1088
+
1089
+ if self.gradient_checkpointing and self.training:
1090
+ layer_outputs = self._gradient_checkpointing_func(
1091
+ decoder_layer.__call__,
1092
+ hidden_states,
1093
+ causal_mask,
1094
+ position_ids,
1095
+ past_key_values,
1096
+ output_attentions,
1097
+ use_cache,
1098
+ cache_position,
1099
+ )
1100
+ else:
1101
+ layer_outputs = decoder_layer(
1102
+ hidden_states,
1103
+ attention_mask=causal_mask,
1104
+ position_ids=position_ids,
1105
+ past_key_value=past_key_values,
1106
+ output_attentions=output_attentions,
1107
+ use_cache=use_cache,
1108
+ cache_position=cache_position,
1109
+ )
1110
+
1111
+ hidden_states = layer_outputs[0]
1112
+
1113
+ if use_cache:
1114
+ next_decoder_cache = layer_outputs[
1115
+ 2 if output_attentions else 1]
1116
+
1117
+ if output_attentions:
1118
+ all_self_attns += (layer_outputs[1], )
1119
+
1120
+ hidden_states = self.norm(hidden_states)
1121
+
1122
+ # add hidden states from the last decoder layer
1123
+ if output_hidden_states:
1124
+ all_hidden_states += (hidden_states, )
1125
+
1126
+ next_cache = next_decoder_cache if use_cache else None
1127
+ if return_legacy_cache:
1128
+ next_cache = next_cache.to_legacy_cache()
1129
+
1130
+ if not return_dict:
1131
+ return tuple(
1132
+ v for v in
1133
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
1134
+ if v is not None)
1135
+ return BaseModelOutputWithPast(
1136
+ last_hidden_state=hidden_states,
1137
+ past_key_values=next_cache,
1138
+ hidden_states=all_hidden_states,
1139
+ attentions=all_self_attns,
1140
+ )
1141
+
1142
+ def _update_causal_mask(
1143
+ self,
1144
+ attention_mask: torch.Tensor,
1145
+ input_tensor: torch.Tensor,
1146
+ cache_position: torch.Tensor,
1147
+ past_key_values: Cache,
1148
+ output_attentions: bool,
1149
+ ):
1150
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1151
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1152
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1153
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1154
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1155
+
1156
+ if self.config.attn_implementation == 'flash_attention_2':
1157
+ if attention_mask is not None and 0.0 in attention_mask:
1158
+ return attention_mask
1159
+ return None
1160
+
1161
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1162
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1163
+ # to infer the attention mask.
1164
+ past_seen_tokens = past_key_values.get_seq_length(
1165
+ ) if past_key_values is not None else 0
1166
+ using_static_cache = isinstance(past_key_values, StaticCache)
1167
+
1168
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1169
+ if self.config.attn_implementation == 'sdpa' and not using_static_cache and not output_attentions:
1170
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1171
+ attention_mask,
1172
+ inputs_embeds=input_tensor,
1173
+ past_key_values_length=past_seen_tokens,
1174
+ is_training=self.training,
1175
+ ):
1176
+ return None
1177
+
1178
+ dtype, device = input_tensor.dtype, input_tensor.device
1179
+ min_dtype = torch.finfo(dtype).min
1180
+ sequence_length = input_tensor.shape[1]
1181
+ if using_static_cache:
1182
+ target_length = past_key_values.get_max_length()
1183
+ else:
1184
+ target_length = (attention_mask.shape[-1] if isinstance(
1185
+ attention_mask, torch.Tensor) else past_seen_tokens +
1186
+ sequence_length + 1)
1187
+
1188
+ if attention_mask is not None and attention_mask.dim() == 4:
1189
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1190
+ if attention_mask.max() != 0:
1191
+ raise ValueError(
1192
+ 'Custom 4D attention mask should be passed in inverted form with max==0`'
1193
+ )
1194
+ causal_mask = attention_mask
1195
+ else:
1196
+ causal_mask = torch.full((sequence_length, target_length),
1197
+ fill_value=min_dtype,
1198
+ dtype=dtype,
1199
+ device=device)
1200
+ if sequence_length != 1:
1201
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1202
+ causal_mask *= torch.arange(
1203
+ target_length, device=device) > cache_position.reshape(-1, 1)
1204
+ causal_mask = causal_mask[None, None, :, :].expand(
1205
+ input_tensor.shape[0], 1, -1, -1)
1206
+ if attention_mask is not None:
1207
+ causal_mask = causal_mask.clone(
1208
+ ) # copy to contiguous memory for in-place edit
1209
+ mask_length = attention_mask.shape[-1]
1210
+ padding_mask = causal_mask[:, :, :, :
1211
+ mask_length] + attention_mask[:,
1212
+ None,
1213
+ None, :]
1214
+ padding_mask = padding_mask == 0
1215
+ causal_mask[:, :, :, :
1216
+ mask_length] = causal_mask[:, :, :, :
1217
+ mask_length].masked_fill(
1218
+ padding_mask,
1219
+ min_dtype)
1220
+ if (self.config.attn_implementation == 'sdpa'
1221
+ and attention_mask is not None
1222
+ and attention_mask.device.type == 'cuda'
1223
+ and not output_attentions):
1224
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1225
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1226
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1227
+ causal_mask = AttentionMaskConverter._unmask_unattended(
1228
+ causal_mask, min_dtype) # pylint: disable=E1120
1229
+
1230
+ return causal_mask
1231
+
1232
+
1233
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1234
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1235
+ """Causal language model (CLM) for InternLM2."""
1236
+
1237
+ _auto_class = 'AutoModelForCausalLM'
1238
+ _tied_weights_keys = ['output.weight']
1239
+
1240
+ def __init__(self, config):
1241
+ super().__init__(config)
1242
+ self.model = InternLM2Model(config)
1243
+ self.vocab_size = config.vocab_size
1244
+ self.output = nn.Linear(config.hidden_size,
1245
+ config.vocab_size,
1246
+ bias=False)
1247
+
1248
+ # Initialize weights and apply final processing
1249
+ self.post_init()
1250
+ convert_to_qmodules(self)
1251
+
1252
+ def get_input_embeddings(self):
1253
+ return self.model.tok_embeddings
1254
+
1255
+ def set_input_embeddings(self, value):
1256
+ self.model.tok_embeddings = value
1257
+
1258
+ def get_output_embeddings(self):
1259
+ return self.output
1260
+
1261
+ def set_output_embeddings(self, new_embeddings):
1262
+ self.output = new_embeddings
1263
+
1264
+ def set_decoder(self, decoder):
1265
+ self.model = decoder
1266
+
1267
+ def get_decoder(self):
1268
+ return self.model
1269
+
1270
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1271
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast,
1272
+ config_class=_CONFIG_FOR_DOC)
1273
+ def forward(
1274
+ self,
1275
+ input_ids: torch.LongTensor = None,
1276
+ attention_mask: Optional[torch.Tensor] = None,
1277
+ position_ids: Optional[torch.LongTensor] = None,
1278
+ past_key_values: Optional[Union[Cache,
1279
+ List[torch.FloatTensor]]] = None,
1280
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1281
+ labels: Optional[torch.LongTensor] = None,
1282
+ use_cache: Optional[bool] = None,
1283
+ output_attentions: Optional[bool] = None,
1284
+ output_hidden_states: Optional[bool] = None,
1285
+ return_dict: Optional[bool] = None,
1286
+ cache_position: Optional[torch.LongTensor] = None,
1287
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1288
+ r"""
1289
+ Args:
1290
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1291
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1292
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1293
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1294
+
1295
+ Returns:
1296
+
1297
+ Example:
1298
+
1299
+ ```python
1300
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1301
+
1302
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1303
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1304
+
1305
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1306
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1307
+
1308
+ >>> # Generate
1309
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1310
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1311
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1312
+ ```"""
1313
+
1314
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1315
+ output_hidden_states = (output_hidden_states
1316
+ if output_hidden_states is not None else
1317
+ self.config.output_hidden_states)
1318
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1319
+
1320
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1321
+ outputs = self.model(
1322
+ input_ids=input_ids,
1323
+ attention_mask=attention_mask,
1324
+ position_ids=position_ids,
1325
+ past_key_values=past_key_values,
1326
+ inputs_embeds=inputs_embeds,
1327
+ use_cache=use_cache,
1328
+ output_attentions=output_attentions,
1329
+ output_hidden_states=output_hidden_states,
1330
+ return_dict=return_dict,
1331
+ cache_position=cache_position,
1332
+ )
1333
+
1334
+ hidden_states = outputs[0]
1335
+ if self.config.pretraining_tp > 1:
1336
+ output_slices = self.output.weight.split(
1337
+ self.vocab_size // self.config.pretraining_tp, dim=0)
1338
+ logits = [
1339
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1340
+ for i in range(self.config.pretraining_tp)
1341
+ ]
1342
+ logits = torch.cat(logits, dim=-1)
1343
+ else:
1344
+ logits = self.output(hidden_states)
1345
+ logits = logits.float()
1346
+
1347
+ loss = None
1348
+ if labels is not None:
1349
+ # Shift so that tokens < n predict n
1350
+ shift_logits = logits[..., :-1, :].contiguous()
1351
+ shift_labels = labels[..., 1:].contiguous()
1352
+ # Flatten the tokens
1353
+ loss_fct = CrossEntropyLoss()
1354
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1355
+ shift_labels = shift_labels.view(-1)
1356
+ # Enable model parallelism
1357
+ shift_labels = shift_labels.to(shift_logits.device)
1358
+ loss = loss_fct(shift_logits, shift_labels)
1359
+
1360
+ if not return_dict:
1361
+ output = (logits, ) + outputs[1:]
1362
+ return (loss, ) + output if loss is not None else output
1363
+
1364
+ return CausalLMOutputWithPast(
1365
+ loss=loss,
1366
+ logits=logits,
1367
+ past_key_values=outputs.past_key_values,
1368
+ hidden_states=outputs.hidden_states,
1369
+ attentions=outputs.attentions,
1370
+ )
1371
+
1372
+ def prepare_inputs_for_generation(
1373
+ self,
1374
+ input_ids,
1375
+ past_key_values=None,
1376
+ attention_mask=None,
1377
+ inputs_embeds=None,
1378
+ cache_position=None,
1379
+ use_cache=True,
1380
+ **kwargs,
1381
+ ):
1382
+ past_length = 0
1383
+ if past_key_values is not None:
1384
+ if isinstance(past_key_values, Cache):
1385
+ past_length = cache_position[
1386
+ 0] if cache_position is not None else past_key_values.get_seq_length(
1387
+ )
1388
+ max_cache_length = (torch.tensor(
1389
+ past_key_values.get_max_length(), device=input_ids.device)
1390
+ if past_key_values.get_max_length()
1391
+ is not None else None)
1392
+ cache_length = past_length if max_cache_length is None else torch.min(
1393
+ max_cache_length, past_length)
1394
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1395
+ else:
1396
+ cache_length = past_length = past_key_values[0][0].shape[2]
1397
+ max_cache_length = None
1398
+
1399
+ # Keep only the unprocessed tokens:
1400
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1401
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1402
+ if attention_mask is not None and attention_mask.shape[
1403
+ 1] > input_ids.shape[1]:
1404
+ input_ids = input_ids[:, -(attention_mask.shape[1] -
1405
+ past_length):]
1406
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1407
+ # input_ids based on the past_length.
1408
+ elif past_length < input_ids.shape[1]:
1409
+ input_ids = input_ids[:, past_length:]
1410
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1411
+
1412
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1413
+ if (max_cache_length is not None and attention_mask is not None
1414
+ and cache_length + input_ids.shape[1] > max_cache_length):
1415
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1416
+
1417
+ position_ids = kwargs.get('position_ids', None)
1418
+ if attention_mask is not None and position_ids is None:
1419
+ # create position_ids on the fly for batch generation
1420
+ position_ids = attention_mask.long().cumsum(-1) - 1
1421
+ position_ids.masked_fill_(attention_mask == 0, 1)
1422
+ if past_key_values:
1423
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1424
+
1425
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1426
+ if inputs_embeds is not None and past_key_values is None:
1427
+ model_inputs = {'inputs_embeds': inputs_embeds}
1428
+ else:
1429
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1430
+ # recompiles graphs as the stride of the inputs is a guard.
1431
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1432
+ # TODO: use `next_tokens` directly instead.
1433
+ model_inputs = {'input_ids': input_ids.contiguous()}
1434
+
1435
+ input_length = position_ids.shape[
1436
+ -1] if position_ids is not None else input_ids.shape[-1]
1437
+ if cache_position is None:
1438
+ cache_position = torch.arange(past_length,
1439
+ past_length + input_length,
1440
+ device=input_ids.device)
1441
+ elif use_cache:
1442
+ cache_position = cache_position[-input_length:]
1443
+
1444
+ model_inputs.update({
1445
+ 'position_ids': position_ids,
1446
+ 'cache_position': cache_position,
1447
+ 'past_key_values': past_key_values,
1448
+ 'use_cache': use_cache,
1449
+ 'attention_mask': attention_mask,
1450
+ })
1451
+ return model_inputs
1452
+
1453
+ @staticmethod
1454
+ def _reorder_cache(past_key_values, beam_idx):
1455
+ reordered_past = ()
1456
+ for layer_past in past_key_values:
1457
+ reordered_past += (tuple(
1458
+ past_state.index_select(0, beam_idx.to(past_state.device))
1459
+ for past_state in layer_past), )
1460
+ return reordered_past
1461
+
1462
+ def build_inputs(self,
1463
+ tokenizer,
1464
+ query: str,
1465
+ history: List[Tuple[str, str]] = None,
1466
+ meta_instruction=''):
1467
+ if history is None:
1468
+ history = []
1469
+ if tokenizer.add_bos_token:
1470
+ prompt = ''
1471
+ else:
1472
+ prompt = tokenizer.bos_token
1473
+ if meta_instruction:
1474
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1475
+ for record in history:
1476
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1477
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1478
+ return tokenizer([prompt], return_tensors='pt')
1479
+
1480
+ @torch.no_grad()
1481
+ def chat(
1482
+ self,
1483
+ tokenizer,
1484
+ query: str,
1485
+ history: Optional[List[Tuple[str, str]]] = None,
1486
+ streamer: Optional[BaseStreamer] = None,
1487
+ max_new_tokens: int = 1024,
1488
+ do_sample: bool = True,
1489
+ temperature: float = 0.8,
1490
+ top_p: float = 0.8,
1491
+ meta_instruction:
1492
+ str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1493
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory '
1494
+ '(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1495
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such '
1496
+ 'as English and 中文.',
1497
+ **kwargs,
1498
+ ):
1499
+ if history is None:
1500
+ history = []
1501
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1502
+ inputs = {
1503
+ k: v.to(self.device)
1504
+ for k, v in inputs.items() if torch.is_tensor(v)
1505
+ }
1506
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1507
+ eos_token_id = [
1508
+ tokenizer.eos_token_id,
1509
+ tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]
1510
+ ]
1511
+ outputs = self.generate(
1512
+ **inputs,
1513
+ streamer=streamer,
1514
+ max_new_tokens=max_new_tokens,
1515
+ do_sample=do_sample,
1516
+ temperature=temperature,
1517
+ top_p=top_p,
1518
+ eos_token_id=eos_token_id,
1519
+ **kwargs,
1520
+ )
1521
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
1522
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1523
+ response = response.split('<|im_end|>')[0]
1524
+ history = history + [(query, response)]
1525
+ return response, history
1526
+
1527
+ @torch.no_grad()
1528
+ def stream_chat(
1529
+ self,
1530
+ tokenizer,
1531
+ query: str,
1532
+ history: List[Tuple[str, str]] = None,
1533
+ max_new_tokens: int = 1024,
1534
+ do_sample: bool = True,
1535
+ temperature: float = 0.8,
1536
+ top_p: float = 0.8,
1537
+ **kwargs,
1538
+ ):
1539
+ if history is None:
1540
+ history = []
1541
+ """
1542
+ Return a generator in format: (response, history)
1543
+ Eg.
1544
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1545
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1546
+ """
1547
+ if BaseStreamer is None:
1548
+ raise ModuleNotFoundError(
1549
+ 'The version of `transformers` is too low. Please make sure '
1550
+ 'that you have installed `transformers>=4.28.0`.')
1551
+
1552
+ response_queue = queue.Queue(maxsize=20)
1553
+
1554
+ class ChatStreamer(BaseStreamer):
1555
+ """Streamer used in generate to print words one by one."""
1556
+
1557
+ def __init__(self, tokenizer) -> None:
1558
+ super().__init__()
1559
+ self.tokenizer = tokenizer
1560
+ self.queue = response_queue
1561
+ self.query = query
1562
+ self.history = history
1563
+ self.response = ''
1564
+ self.cache = []
1565
+ self.received_inputs = False
1566
+ self.queue.put(
1567
+ (self.response, history + [(self.query, self.response)]))
1568
+
1569
+ def put(self, value):
1570
+ if len(value.shape) > 1 and value.shape[0] > 1:
1571
+ raise ValueError('ChatStreamer only supports batch size 1')
1572
+ elif len(value.shape) > 1:
1573
+ value = value[0]
1574
+
1575
+ if not self.received_inputs:
1576
+ # The first received value is input_ids, ignore here
1577
+ self.received_inputs = True
1578
+ return
1579
+
1580
+ self.cache.extend(value.tolist())
1581
+ token = self.tokenizer.decode(self.cache,
1582
+ skip_special_tokens=True)
1583
+ if token.strip() != '<|im_end|>':
1584
+ self.response = self.response + token
1585
+ history = self.history + [(self.query, self.response)]
1586
+ self.queue.put((self.response, history))
1587
+ self.cache = []
1588
+ else:
1589
+ self.end()
1590
+
1591
+ def end(self):
1592
+ self.queue.put(None)
1593
+
1594
+ def stream_producer():
1595
+ return self.chat(
1596
+ tokenizer=tokenizer,
1597
+ query=query,
1598
+ streamer=ChatStreamer(tokenizer=tokenizer),
1599
+ history=history,
1600
+ max_new_tokens=max_new_tokens,
1601
+ do_sample=do_sample,
1602
+ temperature=temperature,
1603
+ top_p=top_p,
1604
+ **kwargs,
1605
+ )
1606
+
1607
+ def consumer():
1608
+ producer = threading.Thread(target=stream_producer)
1609
+ producer.start()
1610
+ while True:
1611
+ res = response_queue.get()
1612
+ if res is None:
1613
+ return
1614
+ yield res
1615
+
1616
+ return consumer()
1617
+
1618
+
1619
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1620
+ @add_start_docstrings(
1621
+ """
1622
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1623
+
1624
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1625
+ (e.g. GPT-2) do.
1626
+
1627
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1628
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1629
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1630
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1631
+ each row of the batch).
1632
+ """,
1633
+ InternLM2_START_DOCSTRING,
1634
+ )
1635
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1636
+ """Sequence Classification Head for InternLM2 Model."""
1637
+
1638
+ def __init__(self, config):
1639
+ super().__init__(config)
1640
+ self.num_labels = config.num_labels
1641
+ self.model = InternLM2Model(config)
1642
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1643
+
1644
+ # Initialize weights and apply final processing
1645
+ self.post_init()
1646
+
1647
+ def get_input_embeddings(self):
1648
+ return self.model.tok_embeddings
1649
+
1650
+ def set_input_embeddings(self, value):
1651
+ self.model.tok_embeddings = value
1652
+
1653
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1654
+ def forward(
1655
+ self,
1656
+ input_ids: torch.LongTensor = None,
1657
+ attention_mask: Optional[torch.Tensor] = None,
1658
+ position_ids: Optional[torch.LongTensor] = None,
1659
+ past_key_values: Optional[Union[Cache,
1660
+ List[torch.FloatTensor]]] = None,
1661
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1662
+ labels: Optional[torch.LongTensor] = None,
1663
+ use_cache: Optional[bool] = None,
1664
+ output_attentions: Optional[bool] = None,
1665
+ output_hidden_states: Optional[bool] = None,
1666
+ return_dict: Optional[bool] = None,
1667
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1668
+ r"""
1669
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1670
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1671
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1672
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1673
+ """
1674
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1675
+
1676
+ transformer_outputs = self.model(
1677
+ input_ids,
1678
+ attention_mask=attention_mask,
1679
+ position_ids=position_ids,
1680
+ past_key_values=past_key_values,
1681
+ inputs_embeds=inputs_embeds,
1682
+ use_cache=use_cache,
1683
+ output_attentions=output_attentions,
1684
+ output_hidden_states=output_hidden_states,
1685
+ return_dict=return_dict,
1686
+ )
1687
+ hidden_states = transformer_outputs[0]
1688
+ logits = self.score(hidden_states)
1689
+
1690
+ if input_ids is not None:
1691
+ batch_size = input_ids.shape[0]
1692
+ else:
1693
+ batch_size = inputs_embeds.shape[0]
1694
+
1695
+ if self.config.pad_token_id is None and batch_size != 1:
1696
+ raise ValueError(
1697
+ 'Cannot handle batch sizes > 1 if no padding token is defined.'
1698
+ )
1699
+ if self.config.pad_token_id is None:
1700
+ sequence_lengths = -1
1701
+ else:
1702
+ if input_ids is not None:
1703
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1704
+ sequence_lengths = torch.eq(
1705
+ input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1706
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1707
+ sequence_lengths = sequence_lengths.to(logits.device)
1708
+ else:
1709
+ sequence_lengths = -1
1710
+
1711
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device),
1712
+ sequence_lengths]
1713
+
1714
+ loss = None
1715
+ if labels is not None:
1716
+ labels = labels.to(logits.device)
1717
+ if self.config.problem_type is None:
1718
+ if self.num_labels == 1:
1719
+ self.config.problem_type = 'regression'
1720
+ elif self.num_labels > 1 and (labels.dtype
1721
+ in (torch.long, torch.int)):
1722
+ self.config.problem_type = 'single_label_classification'
1723
+ else:
1724
+ self.config.problem_type = 'multi_label_classification'
1725
+
1726
+ if self.config.problem_type == 'regression':
1727
+ loss_fct = MSELoss()
1728
+ if self.num_labels == 1:
1729
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1730
+ else:
1731
+ loss = loss_fct(pooled_logits, labels)
1732
+ elif self.config.problem_type == 'single_label_classification':
1733
+ loss_fct = CrossEntropyLoss()
1734
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels),
1735
+ labels.view(-1))
1736
+ elif self.config.problem_type == 'multi_label_classification':
1737
+ loss_fct = BCEWithLogitsLoss()
1738
+ loss = loss_fct(pooled_logits, labels)
1739
+ if not return_dict:
1740
+ output = (pooled_logits, ) + transformer_outputs[1:]
1741
+ return ((loss, ) + output) if loss is not None else output
1742
+
1743
+ return SequenceClassifierOutputWithPast(
1744
+ loss=loss,
1745
+ logits=pooled_logits,
1746
+ past_key_values=transformer_outputs.past_key_values,
1747
+ hidden_states=transformer_outputs.hidden_states,
1748
+ attentions=transformer_outputs.attentions,
1749
+ )
1750
+
1751
+
1752
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1753
+ @add_start_docstrings(
1754
+ """
1755
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1756
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1757
+ """,
1758
+ InternLM2_START_DOCSTRING,
1759
+ )
1760
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1761
+ """Question Answering model for InternLM2."""
1762
+
1763
+ base_model_prefix = 'transformer'
1764
+
1765
+ def __init__(self, config):
1766
+ super().__init__(config)
1767
+ self.transformer = InternLM2Model(config)
1768
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1769
+
1770
+ # Initialize weights and apply final processing
1771
+ self.post_init()
1772
+
1773
+ def get_input_embeddings(self):
1774
+ return self.transformer.embed_tokens
1775
+
1776
+ def set_input_embeddings(self, value):
1777
+ self.transformer.embed_tokens = value
1778
+
1779
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1780
+ def forward(
1781
+ self,
1782
+ input_ids: Optional[torch.LongTensor] = None,
1783
+ attention_mask: Optional[torch.FloatTensor] = None,
1784
+ position_ids: Optional[torch.LongTensor] = None,
1785
+ past_key_values: Optional[Union[Cache,
1786
+ List[torch.FloatTensor]]] = None,
1787
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1788
+ start_positions: Optional[torch.LongTensor] = None,
1789
+ end_positions: Optional[torch.LongTensor] = None,
1790
+ output_attentions: Optional[bool] = None,
1791
+ output_hidden_states: Optional[bool] = None,
1792
+ return_dict: Optional[bool] = None,
1793
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1794
+ r"""
1795
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1796
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1797
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1798
+ are not taken into account for computing the loss.
1799
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1800
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1801
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1802
+ are not taken into account for computing the loss.
1803
+ """
1804
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1805
+
1806
+ outputs = self.transformer(
1807
+ input_ids,
1808
+ attention_mask=attention_mask,
1809
+ position_ids=position_ids,
1810
+ past_key_values=past_key_values,
1811
+ inputs_embeds=inputs_embeds,
1812
+ output_attentions=output_attentions,
1813
+ output_hidden_states=output_hidden_states,
1814
+ return_dict=return_dict,
1815
+ )
1816
+
1817
+ sequence_output = outputs[0]
1818
+
1819
+ logits = self.qa_outputs(sequence_output)
1820
+ start_logits, end_logits = logits.split(1, dim=-1)
1821
+ start_logits = start_logits.squeeze(-1).contiguous()
1822
+ end_logits = end_logits.squeeze(-1).contiguous()
1823
+
1824
+ total_loss = None
1825
+ if start_positions is not None and end_positions is not None:
1826
+ # If we are on multi-GPU, split add a dimension
1827
+ if len(start_positions.size()) > 1:
1828
+ start_positions = start_positions.squeeze(-1).to(
1829
+ start_logits.device)
1830
+ if len(end_positions.size()) > 1:
1831
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1832
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1833
+ ignored_index = start_logits.size(1)
1834
+ start_positions = start_positions.clamp(0, ignored_index)
1835
+ end_positions = end_positions.clamp(0, ignored_index)
1836
+
1837
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1838
+ start_loss = loss_fct(start_logits, start_positions)
1839
+ end_loss = loss_fct(end_logits, end_positions)
1840
+ total_loss = (start_loss + end_loss) / 2
1841
+
1842
+ if not return_dict:
1843
+ output = (start_logits, end_logits) + outputs[2:]
1844
+ return ((total_loss, ) +
1845
+ output) if total_loss is not None else output
1846
+
1847
+ return QuestionAnsweringModelOutput(
1848
+ loss=total_loss,
1849
+ start_logits=start_logits,
1850
+ end_logits=end_logits,
1851
+ hidden_states=outputs.hidden_states,
1852
+ attentions=outputs.attentions,
1853
+ )
1854
+
1855
+
1856
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1857
+ @add_start_docstrings(
1858
+ """
1859
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1860
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1861
+ """,
1862
+ InternLM2_START_DOCSTRING,
1863
+ )
1864
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1865
+ """Token classification model for InternLM2."""
1866
+
1867
+ def __init__(self, config):
1868
+ super().__init__(config)
1869
+ self.num_labels = config.num_labels
1870
+ self.model = InternLM2Model(config)
1871
+ if getattr(config, 'classifier_dropout', None) is not None:
1872
+ classifier_dropout = config.classifier_dropout
1873
+ elif getattr(config, 'hidden_dropout', None) is not None:
1874
+ classifier_dropout = config.hidden_dropout
1875
+ else:
1876
+ classifier_dropout = 0.1
1877
+ self.dropout = nn.Dropout(classifier_dropout)
1878
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1879
+
1880
+ # Initialize weights and apply final processing
1881
+ self.post_init()
1882
+
1883
+ def get_input_embeddings(self):
1884
+ return self.model.embed_tokens
1885
+
1886
+ def set_input_embeddings(self, value):
1887
+ self.model.embed_tokens = value
1888
+
1889
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1890
+ def forward(
1891
+ self,
1892
+ input_ids: torch.LongTensor = None,
1893
+ attention_mask: Optional[torch.Tensor] = None,
1894
+ position_ids: Optional[torch.LongTensor] = None,
1895
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1896
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1897
+ labels: Optional[torch.LongTensor] = None,
1898
+ use_cache: Optional[bool] = None,
1899
+ output_attentions: Optional[bool] = None,
1900
+ output_hidden_states: Optional[bool] = None,
1901
+ return_dict: Optional[bool] = None,
1902
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1903
+ r"""
1904
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1905
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1906
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1907
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1908
+ """
1909
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1910
+
1911
+ outputs = self.model(
1912
+ input_ids,
1913
+ attention_mask=attention_mask,
1914
+ position_ids=position_ids,
1915
+ past_key_values=past_key_values,
1916
+ inputs_embeds=inputs_embeds,
1917
+ use_cache=use_cache,
1918
+ output_attentions=output_attentions,
1919
+ output_hidden_states=output_hidden_states,
1920
+ return_dict=return_dict,
1921
+ )
1922
+ sequence_output = outputs[0]
1923
+ sequence_output = self.dropout(sequence_output)
1924
+ logits = self.score(sequence_output)
1925
+
1926
+ loss = None
1927
+ if labels is not None:
1928
+ loss_fct = CrossEntropyLoss()
1929
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1930
+
1931
+ if not return_dict:
1932
+ output = (logits, ) + outputs[2:]
1933
+ return ((loss, ) + output) if loss is not None else output
1934
+
1935
+ return TokenClassifierOutput(
1936
+ loss=loss,
1937
+ logits=logits,
1938
+ hidden_states=outputs.hidden_states,
1939
+ attentions=outputs.attentions,
1940
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ LlamaTokenizer)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .conversation import get_conv_template
21
+ from .modeling_intern_vit import InternVisionModel
22
+ from .modeling_internlm2 import InternLM2ForCausalLM
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+
35
+ class InternVLChatModel(PreTrainedModel):
36
+ config_class = InternVLChatConfig
37
+ main_input_name = 'pixel_values'
38
+ _supports_flash_attn_2 = True
39
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
40
+
41
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
42
+ super().__init__(config)
43
+
44
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
45
+ image_size = config.force_image_size or config.vision_config.image_size
46
+ patch_size = config.vision_config.patch_size
47
+ self.patch_size = patch_size
48
+ self.select_layer = config.select_layer
49
+ self.template = config.template
50
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
51
+ self.downsample_ratio = config.downsample_ratio
52
+ self.ps_version = config.ps_version
53
+
54
+ logger.info(f'num_image_token: {self.num_image_token}')
55
+ logger.info(f'ps_version: {self.ps_version}')
56
+ if vision_model is not None:
57
+ self.vision_model = vision_model
58
+ else:
59
+ self.vision_model = InternVisionModel(config.vision_config)
60
+ if language_model is not None:
61
+ self.language_model = language_model
62
+ else:
63
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
64
+ self.language_model = LlamaForCausalLM(config.llm_config)
65
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
66
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
67
+ else:
68
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
69
+
70
+ vit_hidden_size = config.vision_config.hidden_size
71
+ llm_hidden_size = config.llm_config.hidden_size
72
+
73
+ self.mlp1 = nn.Sequential(
74
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
75
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
76
+ nn.GELU(),
77
+ nn.Linear(llm_hidden_size, llm_hidden_size)
78
+ )
79
+
80
+ self.img_context_token_id = None
81
+ self.conv_template = get_conv_template(self.template)
82
+ self.system_message = self.conv_template.system_message
83
+
84
+ def forward(
85
+ self,
86
+ pixel_values: torch.FloatTensor,
87
+ input_ids: torch.LongTensor = None,
88
+ attention_mask: Optional[torch.Tensor] = None,
89
+ position_ids: Optional[torch.LongTensor] = None,
90
+ image_flags: Optional[torch.LongTensor] = None,
91
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
92
+ labels: Optional[torch.LongTensor] = None,
93
+ use_cache: Optional[bool] = None,
94
+ output_attentions: Optional[bool] = None,
95
+ output_hidden_states: Optional[bool] = None,
96
+ return_dict: Optional[bool] = None,
97
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
98
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
99
+
100
+ image_flags = image_flags.squeeze(-1)
101
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
102
+
103
+ vit_embeds = self.extract_feature(pixel_values)
104
+ vit_embeds = vit_embeds[image_flags == 1]
105
+ vit_batch_size = pixel_values.shape[0]
106
+
107
+ B, N, C = input_embeds.shape
108
+ input_embeds = input_embeds.reshape(B * N, C)
109
+
110
+ if torch.distributed.get_rank() == 0:
111
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
112
+
113
+ input_ids = input_ids.reshape(B * N)
114
+ selected = (input_ids == self.img_context_token_id)
115
+ try:
116
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
117
+ except Exception as e:
118
+ vit_embeds = vit_embeds.reshape(-1, C)
119
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
120
+ f'vit_embeds.shape={vit_embeds.shape}')
121
+ n_token = selected.sum()
122
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
123
+
124
+ input_embeds = input_embeds.reshape(B, N, C)
125
+
126
+ outputs = self.language_model(
127
+ inputs_embeds=input_embeds,
128
+ attention_mask=attention_mask,
129
+ position_ids=position_ids,
130
+ past_key_values=past_key_values,
131
+ use_cache=use_cache,
132
+ output_attentions=output_attentions,
133
+ output_hidden_states=output_hidden_states,
134
+ return_dict=return_dict,
135
+ )
136
+ logits = outputs.logits
137
+
138
+ loss = None
139
+ if labels is not None:
140
+ # Shift so that tokens < n predict n
141
+ shift_logits = logits[..., :-1, :].contiguous()
142
+ shift_labels = labels[..., 1:].contiguous()
143
+ # Flatten the tokens
144
+ loss_fct = CrossEntropyLoss()
145
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
146
+ shift_labels = shift_labels.view(-1)
147
+ # Enable model parallelism
148
+ shift_labels = shift_labels.to(shift_logits.device)
149
+ loss = loss_fct(shift_logits, shift_labels)
150
+
151
+ if not return_dict:
152
+ output = (logits,) + outputs[1:]
153
+ return (loss,) + output if loss is not None else output
154
+
155
+ return CausalLMOutputWithPast(
156
+ loss=loss,
157
+ logits=logits,
158
+ past_key_values=outputs.past_key_values,
159
+ hidden_states=outputs.hidden_states,
160
+ attentions=outputs.attentions,
161
+ )
162
+
163
+ def pixel_shuffle(self, x, scale_factor=0.5):
164
+ n, w, h, c = x.size()
165
+ # N, W, H, C --> N, W, H * scale, C // scale
166
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
167
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
168
+ x = x.permute(0, 2, 1, 3).contiguous()
169
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
170
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
171
+ int(c / (scale_factor * scale_factor)))
172
+ if self.ps_version == 'v1':
173
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
174
+ 'which results in a transposed image.')
175
+ else:
176
+ x = x.permute(0, 2, 1, 3).contiguous()
177
+ return x
178
+
179
+ def extract_feature(self, pixel_values):
180
+ if self.select_layer == -1:
181
+ vit_embeds = self.vision_model(
182
+ pixel_values=pixel_values,
183
+ output_hidden_states=False,
184
+ return_dict=True).last_hidden_state
185
+ else:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=True,
189
+ return_dict=True).hidden_states[self.select_layer]
190
+ vit_embeds = vit_embeds[:, 1:, :]
191
+
192
+ h = w = int(vit_embeds.shape[1] ** 0.5)
193
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
194
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
195
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
196
+ vit_embeds = self.mlp1(vit_embeds)
197
+ return vit_embeds
198
+
199
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
200
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
201
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
202
+ if history is not None or return_history:
203
+ print('Now multi-turn chat is not supported in batch_chat.')
204
+ raise NotImplementedError
205
+
206
+ if image_counts is not None:
207
+ num_patches_list = image_counts
208
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
209
+
210
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
211
+ self.img_context_token_id = img_context_token_id
212
+
213
+ if verbose and pixel_values is not None:
214
+ image_bs = pixel_values.shape[0]
215
+ print(f'dynamic ViT batch size: {image_bs}')
216
+
217
+ queries = []
218
+ for idx, num_patches in enumerate(num_patches_list):
219
+ question = questions[idx]
220
+ if pixel_values is not None and '<image>' not in question:
221
+ question = '<image>\n' + question
222
+ template = get_conv_template(self.template)
223
+ template.system_message = self.system_message
224
+ template.append_message(template.roles[0], question)
225
+ template.append_message(template.roles[1], None)
226
+ query = template.get_prompt()
227
+
228
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
229
+ query = query.replace('<image>', image_tokens, 1)
230
+ queries.append(query)
231
+
232
+ tokenizer.padding_side = 'left'
233
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
234
+ input_ids = model_inputs['input_ids'].cuda()
235
+ attention_mask = model_inputs['attention_mask'].cuda()
236
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
237
+ generation_config['eos_token_id'] = eos_token_id
238
+ generation_output = self.generate(
239
+ pixel_values=pixel_values,
240
+ input_ids=input_ids,
241
+ attention_mask=attention_mask,
242
+ **generation_config
243
+ )
244
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
245
+ responses = [response.split(template.sep)[0].strip() for response in responses]
246
+ return responses
247
+
248
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
249
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
250
+ verbose=False):
251
+
252
+ if history is None and pixel_values is not None and '<image>' not in question:
253
+ question = '<image>\n' + question
254
+
255
+ if num_patches_list is None:
256
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
257
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
258
+
259
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
260
+ self.img_context_token_id = img_context_token_id
261
+
262
+ template = get_conv_template(self.template)
263
+ template.system_message = self.system_message
264
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
265
+
266
+ history = [] if history is None else history
267
+ for (old_question, old_answer) in history:
268
+ template.append_message(template.roles[0], old_question)
269
+ template.append_message(template.roles[1], old_answer)
270
+ template.append_message(template.roles[0], question)
271
+ template.append_message(template.roles[1], None)
272
+ query = template.get_prompt()
273
+
274
+ if verbose and pixel_values is not None:
275
+ image_bs = pixel_values.shape[0]
276
+ print(f'dynamic ViT batch size: {image_bs}')
277
+
278
+ for num_patches in num_patches_list:
279
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
280
+ query = query.replace('<image>', image_tokens, 1)
281
+
282
+ model_inputs = tokenizer(query, return_tensors='pt')
283
+ input_ids = model_inputs['input_ids'].cuda()
284
+ attention_mask = model_inputs['attention_mask'].cuda()
285
+ generation_config['eos_token_id'] = eos_token_id
286
+ generation_output = self.generate(
287
+ pixel_values=pixel_values,
288
+ input_ids=input_ids,
289
+ attention_mask=attention_mask,
290
+ **generation_config
291
+ )
292
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
293
+ response = response.split(template.sep)[0].strip()
294
+ history.append((question, response))
295
+ if return_history:
296
+ return response, history
297
+ else:
298
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
299
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
300
+ if verbose:
301
+ print(query_to_print, response)
302
+ return response
303
+
304
+ @torch.no_grad()
305
+ def generate(
306
+ self,
307
+ pixel_values: Optional[torch.FloatTensor] = None,
308
+ input_ids: Optional[torch.FloatTensor] = None,
309
+ attention_mask: Optional[torch.LongTensor] = None,
310
+ visual_features: Optional[torch.FloatTensor] = None,
311
+ generation_config: Optional[GenerationConfig] = None,
312
+ output_hidden_states: Optional[bool] = None,
313
+ return_dict: Optional[bool] = None,
314
+ **generate_kwargs,
315
+ ) -> torch.LongTensor:
316
+
317
+ assert self.img_context_token_id is not None
318
+ if pixel_values is not None:
319
+ if visual_features is not None:
320
+ vit_embeds = visual_features
321
+ else:
322
+ vit_embeds = self.extract_feature(pixel_values)
323
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
324
+ B, N, C = input_embeds.shape
325
+ input_embeds = input_embeds.reshape(B * N, C)
326
+
327
+ input_ids = input_ids.reshape(B * N)
328
+ selected = (input_ids == self.img_context_token_id)
329
+ assert selected.sum() != 0
330
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
331
+
332
+ input_embeds = input_embeds.reshape(B, N, C)
333
+ else:
334
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
335
+
336
+ outputs = self.language_model.generate(
337
+ inputs_embeds=input_embeds,
338
+ attention_mask=attention_mask,
339
+ generation_config=generation_config,
340
+ output_hidden_states=output_hidden_states,
341
+ return_dict=return_dict,
342
+ use_cache=True,
343
+ **generate_kwargs,
344
+ )
345
+
346
+ return outputs
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6617e7528fb2b779735fd8041125e2300b4c1cd426018479a7560802b72c638
3
+ size 16741979
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
pytorch_model-00001-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98744b0df72730184c8a04dfc043bc9b6abb7611ad0965697b195d94bc377c4d
3
+ size 1962502837
pytorch_model-00002-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcab8b879bc7c81107b50cd452ccc12be883bb4c5c517ac97737ec1c4082a55e
3
+ size 1964669578
pytorch_model-00003-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42c6ed4253aa04611185436f67d585b119955bed88cafd3671cf4919e0fa9738
3
+ size 1964669642
pytorch_model-00004-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f74eb5ec2a290cd9d22734c54a1c09218ec288e8a727352ac51f64a45019df
3
+ size 1964669642
pytorch_model-00005-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a28e53a02ed9ba3cd7cafd12f036c8d9a6bb7fbfe9a901ff925adbc8fa3dd33
3
+ size 1320727346
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9176979456
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.layers.0.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
7
+ "language_model.model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
8
+ "language_model.model.layers.0.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
9
+ "language_model.model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
10
+ "language_model.model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00005.bin",
11
+ "language_model.model.layers.0.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
12
+ "language_model.model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
13
+ "language_model.model.layers.0.feed_forward.w2.scale": "pytorch_model-00001-of-00005.bin",
14
+ "language_model.model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00005.bin",
15
+ "language_model.model.layers.0.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
16
+ "language_model.model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
17
+ "language_model.model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00005.bin",
18
+ "language_model.model.layers.1.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
19
+ "language_model.model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
20
+ "language_model.model.layers.1.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
21
+ "language_model.model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
22
+ "language_model.model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00005.bin",
23
+ "language_model.model.layers.1.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
24
+ "language_model.model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
25
+ "language_model.model.layers.1.feed_forward.w2.scale": "pytorch_model-00001-of-00005.bin",
26
+ "language_model.model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00005.bin",
27
+ "language_model.model.layers.1.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
28
+ "language_model.model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
29
+ "language_model.model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00005.bin",
30
+ "language_model.model.layers.10.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
31
+ "language_model.model.layers.10.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
32
+ "language_model.model.layers.10.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
33
+ "language_model.model.layers.10.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
34
+ "language_model.model.layers.10.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
35
+ "language_model.model.layers.10.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
36
+ "language_model.model.layers.10.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
37
+ "language_model.model.layers.10.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
38
+ "language_model.model.layers.10.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
39
+ "language_model.model.layers.10.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
40
+ "language_model.model.layers.10.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
41
+ "language_model.model.layers.10.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
42
+ "language_model.model.layers.11.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
43
+ "language_model.model.layers.11.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
44
+ "language_model.model.layers.11.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
45
+ "language_model.model.layers.11.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
46
+ "language_model.model.layers.11.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
47
+ "language_model.model.layers.11.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
48
+ "language_model.model.layers.11.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
49
+ "language_model.model.layers.11.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
50
+ "language_model.model.layers.11.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
51
+ "language_model.model.layers.11.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
52
+ "language_model.model.layers.11.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
53
+ "language_model.model.layers.11.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
54
+ "language_model.model.layers.12.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
55
+ "language_model.model.layers.12.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
56
+ "language_model.model.layers.12.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
57
+ "language_model.model.layers.12.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
58
+ "language_model.model.layers.12.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
59
+ "language_model.model.layers.12.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
60
+ "language_model.model.layers.12.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
61
+ "language_model.model.layers.12.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
62
+ "language_model.model.layers.12.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
63
+ "language_model.model.layers.12.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
64
+ "language_model.model.layers.12.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
65
+ "language_model.model.layers.12.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
66
+ "language_model.model.layers.13.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
67
+ "language_model.model.layers.13.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
68
+ "language_model.model.layers.13.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
69
+ "language_model.model.layers.13.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
70
+ "language_model.model.layers.13.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
71
+ "language_model.model.layers.13.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
72
+ "language_model.model.layers.13.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
73
+ "language_model.model.layers.13.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
74
+ "language_model.model.layers.13.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
75
+ "language_model.model.layers.13.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
76
+ "language_model.model.layers.13.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
77
+ "language_model.model.layers.13.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
78
+ "language_model.model.layers.14.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
79
+ "language_model.model.layers.14.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
80
+ "language_model.model.layers.14.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
81
+ "language_model.model.layers.14.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
82
+ "language_model.model.layers.14.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
83
+ "language_model.model.layers.14.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
84
+ "language_model.model.layers.14.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
85
+ "language_model.model.layers.14.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
86
+ "language_model.model.layers.14.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
87
+ "language_model.model.layers.14.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
88
+ "language_model.model.layers.14.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
89
+ "language_model.model.layers.14.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
90
+ "language_model.model.layers.15.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
91
+ "language_model.model.layers.15.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
92
+ "language_model.model.layers.15.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
93
+ "language_model.model.layers.15.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
94
+ "language_model.model.layers.15.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
95
+ "language_model.model.layers.15.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
96
+ "language_model.model.layers.15.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
97
+ "language_model.model.layers.15.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
98
+ "language_model.model.layers.15.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
99
+ "language_model.model.layers.15.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
100
+ "language_model.model.layers.15.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
101
+ "language_model.model.layers.15.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
102
+ "language_model.model.layers.16.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
103
+ "language_model.model.layers.16.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
104
+ "language_model.model.layers.16.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
105
+ "language_model.model.layers.16.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
106
+ "language_model.model.layers.16.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
107
+ "language_model.model.layers.16.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
108
+ "language_model.model.layers.16.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
109
+ "language_model.model.layers.16.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
110
+ "language_model.model.layers.16.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
111
+ "language_model.model.layers.16.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
112
+ "language_model.model.layers.16.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
113
+ "language_model.model.layers.16.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
114
+ "language_model.model.layers.17.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
115
+ "language_model.model.layers.17.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
116
+ "language_model.model.layers.17.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
117
+ "language_model.model.layers.17.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
118
+ "language_model.model.layers.17.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
119
+ "language_model.model.layers.17.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
120
+ "language_model.model.layers.17.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
121
+ "language_model.model.layers.17.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
122
+ "language_model.model.layers.17.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
123
+ "language_model.model.layers.17.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
124
+ "language_model.model.layers.17.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
125
+ "language_model.model.layers.17.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
126
+ "language_model.model.layers.18.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
127
+ "language_model.model.layers.18.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
128
+ "language_model.model.layers.18.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
129
+ "language_model.model.layers.18.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
130
+ "language_model.model.layers.18.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
131
+ "language_model.model.layers.18.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
132
+ "language_model.model.layers.18.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
133
+ "language_model.model.layers.18.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
134
+ "language_model.model.layers.18.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
135
+ "language_model.model.layers.18.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
136
+ "language_model.model.layers.18.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
137
+ "language_model.model.layers.18.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
138
+ "language_model.model.layers.19.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
139
+ "language_model.model.layers.19.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
140
+ "language_model.model.layers.19.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
141
+ "language_model.model.layers.19.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
142
+ "language_model.model.layers.19.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
143
+ "language_model.model.layers.19.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
144
+ "language_model.model.layers.19.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
145
+ "language_model.model.layers.19.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
146
+ "language_model.model.layers.19.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
147
+ "language_model.model.layers.19.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
148
+ "language_model.model.layers.19.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
149
+ "language_model.model.layers.19.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
150
+ "language_model.model.layers.2.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
151
+ "language_model.model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
152
+ "language_model.model.layers.2.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
153
+ "language_model.model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
154
+ "language_model.model.layers.2.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
155
+ "language_model.model.layers.2.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
156
+ "language_model.model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
157
+ "language_model.model.layers.2.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
158
+ "language_model.model.layers.2.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
159
+ "language_model.model.layers.2.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
160
+ "language_model.model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
161
+ "language_model.model.layers.2.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
162
+ "language_model.model.layers.20.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
163
+ "language_model.model.layers.20.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
164
+ "language_model.model.layers.20.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
165
+ "language_model.model.layers.20.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
166
+ "language_model.model.layers.20.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
167
+ "language_model.model.layers.20.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
168
+ "language_model.model.layers.20.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
169
+ "language_model.model.layers.20.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
170
+ "language_model.model.layers.20.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
171
+ "language_model.model.layers.20.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
172
+ "language_model.model.layers.20.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
173
+ "language_model.model.layers.20.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
174
+ "language_model.model.layers.21.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
175
+ "language_model.model.layers.21.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
176
+ "language_model.model.layers.21.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
177
+ "language_model.model.layers.21.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
178
+ "language_model.model.layers.21.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
179
+ "language_model.model.layers.21.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
180
+ "language_model.model.layers.21.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
181
+ "language_model.model.layers.21.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
182
+ "language_model.model.layers.21.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
183
+ "language_model.model.layers.21.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
184
+ "language_model.model.layers.21.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
185
+ "language_model.model.layers.21.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
186
+ "language_model.model.layers.22.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
187
+ "language_model.model.layers.22.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
188
+ "language_model.model.layers.22.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
189
+ "language_model.model.layers.22.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
190
+ "language_model.model.layers.22.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
191
+ "language_model.model.layers.22.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
192
+ "language_model.model.layers.22.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
193
+ "language_model.model.layers.22.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
194
+ "language_model.model.layers.22.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
195
+ "language_model.model.layers.22.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
196
+ "language_model.model.layers.22.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
197
+ "language_model.model.layers.22.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
198
+ "language_model.model.layers.23.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
199
+ "language_model.model.layers.23.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
200
+ "language_model.model.layers.23.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
201
+ "language_model.model.layers.23.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
202
+ "language_model.model.layers.23.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
203
+ "language_model.model.layers.23.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
204
+ "language_model.model.layers.23.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
205
+ "language_model.model.layers.23.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
206
+ "language_model.model.layers.23.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
207
+ "language_model.model.layers.23.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
208
+ "language_model.model.layers.23.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
209
+ "language_model.model.layers.23.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
210
+ "language_model.model.layers.24.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
211
+ "language_model.model.layers.24.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
212
+ "language_model.model.layers.24.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
213
+ "language_model.model.layers.24.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
214
+ "language_model.model.layers.24.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
215
+ "language_model.model.layers.24.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
216
+ "language_model.model.layers.24.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
217
+ "language_model.model.layers.24.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
218
+ "language_model.model.layers.24.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
219
+ "language_model.model.layers.24.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
220
+ "language_model.model.layers.24.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
221
+ "language_model.model.layers.24.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
222
+ "language_model.model.layers.25.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
223
+ "language_model.model.layers.25.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
224
+ "language_model.model.layers.25.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
225
+ "language_model.model.layers.25.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
226
+ "language_model.model.layers.25.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
227
+ "language_model.model.layers.25.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
228
+ "language_model.model.layers.25.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
229
+ "language_model.model.layers.25.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
230
+ "language_model.model.layers.25.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
231
+ "language_model.model.layers.25.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
232
+ "language_model.model.layers.25.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
233
+ "language_model.model.layers.25.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
234
+ "language_model.model.layers.26.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
235
+ "language_model.model.layers.26.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
236
+ "language_model.model.layers.26.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
237
+ "language_model.model.layers.26.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
238
+ "language_model.model.layers.26.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
239
+ "language_model.model.layers.26.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
240
+ "language_model.model.layers.26.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
241
+ "language_model.model.layers.26.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
242
+ "language_model.model.layers.26.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
243
+ "language_model.model.layers.26.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
244
+ "language_model.model.layers.26.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
245
+ "language_model.model.layers.26.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
246
+ "language_model.model.layers.27.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
247
+ "language_model.model.layers.27.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
248
+ "language_model.model.layers.27.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
249
+ "language_model.model.layers.27.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
250
+ "language_model.model.layers.27.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
251
+ "language_model.model.layers.27.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
252
+ "language_model.model.layers.27.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
253
+ "language_model.model.layers.27.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
254
+ "language_model.model.layers.27.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
255
+ "language_model.model.layers.27.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
256
+ "language_model.model.layers.27.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
257
+ "language_model.model.layers.27.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
258
+ "language_model.model.layers.28.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
259
+ "language_model.model.layers.28.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
260
+ "language_model.model.layers.28.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
261
+ "language_model.model.layers.28.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
262
+ "language_model.model.layers.28.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
263
+ "language_model.model.layers.28.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
264
+ "language_model.model.layers.28.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
265
+ "language_model.model.layers.28.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
266
+ "language_model.model.layers.28.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
267
+ "language_model.model.layers.28.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
268
+ "language_model.model.layers.28.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
269
+ "language_model.model.layers.28.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
270
+ "language_model.model.layers.29.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
271
+ "language_model.model.layers.29.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
272
+ "language_model.model.layers.29.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
273
+ "language_model.model.layers.29.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
274
+ "language_model.model.layers.29.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
275
+ "language_model.model.layers.29.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
276
+ "language_model.model.layers.29.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
277
+ "language_model.model.layers.29.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
278
+ "language_model.model.layers.29.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
279
+ "language_model.model.layers.29.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
280
+ "language_model.model.layers.29.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
281
+ "language_model.model.layers.29.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
282
+ "language_model.model.layers.3.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
283
+ "language_model.model.layers.3.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
284
+ "language_model.model.layers.3.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
285
+ "language_model.model.layers.3.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
286
+ "language_model.model.layers.3.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
287
+ "language_model.model.layers.3.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
288
+ "language_model.model.layers.3.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
289
+ "language_model.model.layers.3.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
290
+ "language_model.model.layers.3.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
291
+ "language_model.model.layers.3.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
292
+ "language_model.model.layers.3.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
293
+ "language_model.model.layers.3.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
294
+ "language_model.model.layers.30.attention.wo.scale": "pytorch_model-00005-of-00005.bin",
295
+ "language_model.model.layers.30.attention.wo.weight": "pytorch_model-00005-of-00005.bin",
296
+ "language_model.model.layers.30.attention.wqkv.scale": "pytorch_model-00005-of-00005.bin",
297
+ "language_model.model.layers.30.attention.wqkv.weight": "pytorch_model-00005-of-00005.bin",
298
+ "language_model.model.layers.30.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
299
+ "language_model.model.layers.30.feed_forward.w1.scale": "pytorch_model-00005-of-00005.bin",
300
+ "language_model.model.layers.30.feed_forward.w1.weight": "pytorch_model-00005-of-00005.bin",
301
+ "language_model.model.layers.30.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
302
+ "language_model.model.layers.30.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
303
+ "language_model.model.layers.30.feed_forward.w3.scale": "pytorch_model-00005-of-00005.bin",
304
+ "language_model.model.layers.30.feed_forward.w3.weight": "pytorch_model-00005-of-00005.bin",
305
+ "language_model.model.layers.30.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
306
+ "language_model.model.layers.31.attention.wo.scale": "pytorch_model-00005-of-00005.bin",
307
+ "language_model.model.layers.31.attention.wo.weight": "pytorch_model-00005-of-00005.bin",
308
+ "language_model.model.layers.31.attention.wqkv.scale": "pytorch_model-00005-of-00005.bin",
309
+ "language_model.model.layers.31.attention.wqkv.weight": "pytorch_model-00005-of-00005.bin",
310
+ "language_model.model.layers.31.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
311
+ "language_model.model.layers.31.feed_forward.w1.scale": "pytorch_model-00005-of-00005.bin",
312
+ "language_model.model.layers.31.feed_forward.w1.weight": "pytorch_model-00005-of-00005.bin",
313
+ "language_model.model.layers.31.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
314
+ "language_model.model.layers.31.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
315
+ "language_model.model.layers.31.feed_forward.w3.scale": "pytorch_model-00005-of-00005.bin",
316
+ "language_model.model.layers.31.feed_forward.w3.weight": "pytorch_model-00005-of-00005.bin",
317
+ "language_model.model.layers.31.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
318
+ "language_model.model.layers.4.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
319
+ "language_model.model.layers.4.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
320
+ "language_model.model.layers.4.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
321
+ "language_model.model.layers.4.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
322
+ "language_model.model.layers.4.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
323
+ "language_model.model.layers.4.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
324
+ "language_model.model.layers.4.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
325
+ "language_model.model.layers.4.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
326
+ "language_model.model.layers.4.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
327
+ "language_model.model.layers.4.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
328
+ "language_model.model.layers.4.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
329
+ "language_model.model.layers.4.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
330
+ "language_model.model.layers.5.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
331
+ "language_model.model.layers.5.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
332
+ "language_model.model.layers.5.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
333
+ "language_model.model.layers.5.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
334
+ "language_model.model.layers.5.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
335
+ "language_model.model.layers.5.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
336
+ "language_model.model.layers.5.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
337
+ "language_model.model.layers.5.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
338
+ "language_model.model.layers.5.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
339
+ "language_model.model.layers.5.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
340
+ "language_model.model.layers.5.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
341
+ "language_model.model.layers.5.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
342
+ "language_model.model.layers.6.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
343
+ "language_model.model.layers.6.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
344
+ "language_model.model.layers.6.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
345
+ "language_model.model.layers.6.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
346
+ "language_model.model.layers.6.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
347
+ "language_model.model.layers.6.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
348
+ "language_model.model.layers.6.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
349
+ "language_model.model.layers.6.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
350
+ "language_model.model.layers.6.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
351
+ "language_model.model.layers.6.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
352
+ "language_model.model.layers.6.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
353
+ "language_model.model.layers.6.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
354
+ "language_model.model.layers.7.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
355
+ "language_model.model.layers.7.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
356
+ "language_model.model.layers.7.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
357
+ "language_model.model.layers.7.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
358
+ "language_model.model.layers.7.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
359
+ "language_model.model.layers.7.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
360
+ "language_model.model.layers.7.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
361
+ "language_model.model.layers.7.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
362
+ "language_model.model.layers.7.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
363
+ "language_model.model.layers.7.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
364
+ "language_model.model.layers.7.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
365
+ "language_model.model.layers.7.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
366
+ "language_model.model.layers.8.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
367
+ "language_model.model.layers.8.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
368
+ "language_model.model.layers.8.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
369
+ "language_model.model.layers.8.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
370
+ "language_model.model.layers.8.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
371
+ "language_model.model.layers.8.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
372
+ "language_model.model.layers.8.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
373
+ "language_model.model.layers.8.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
374
+ "language_model.model.layers.8.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
375
+ "language_model.model.layers.8.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
376
+ "language_model.model.layers.8.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
377
+ "language_model.model.layers.8.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
378
+ "language_model.model.layers.9.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
379
+ "language_model.model.layers.9.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
380
+ "language_model.model.layers.9.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
381
+ "language_model.model.layers.9.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
382
+ "language_model.model.layers.9.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
383
+ "language_model.model.layers.9.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
384
+ "language_model.model.layers.9.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
385
+ "language_model.model.layers.9.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
386
+ "language_model.model.layers.9.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
387
+ "language_model.model.layers.9.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
388
+ "language_model.model.layers.9.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
389
+ "language_model.model.layers.9.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
390
+ "language_model.model.norm.weight": "pytorch_model-00005-of-00005.bin",
391
+ "language_model.model.tok_embeddings.weight": "pytorch_model-00001-of-00005.bin",
392
+ "language_model.output.weight": "pytorch_model-00005-of-00005.bin",
393
+ "mlp1.0.bias": "pytorch_model-00005-of-00005.bin",
394
+ "mlp1.0.weight": "pytorch_model-00005-of-00005.bin",
395
+ "mlp1.1.bias": "pytorch_model-00005-of-00005.bin",
396
+ "mlp1.1.weight": "pytorch_model-00005-of-00005.bin",
397
+ "mlp1.3.bias": "pytorch_model-00005-of-00005.bin",
398
+ "mlp1.3.weight": "pytorch_model-00005-of-00005.bin",
399
+ "vision_model.embeddings.class_embedding": "pytorch_model-00001-of-00005.bin",
400
+ "vision_model.embeddings.patch_embedding.bias": "pytorch_model-00001-of-00005.bin",
401
+ "vision_model.embeddings.patch_embedding.weight": "pytorch_model-00001-of-00005.bin",
402
+ "vision_model.embeddings.position_embedding": "pytorch_model-00001-of-00005.bin",
403
+ "vision_model.encoder.layers.0.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
404
+ "vision_model.encoder.layers.0.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
405
+ "vision_model.encoder.layers.0.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
406
+ "vision_model.encoder.layers.0.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
407
+ "vision_model.encoder.layers.0.ls1": "pytorch_model-00001-of-00005.bin",
408
+ "vision_model.encoder.layers.0.ls2": "pytorch_model-00001-of-00005.bin",
409
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
410
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
411
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
412
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
413
+ "vision_model.encoder.layers.0.norm1.bias": "pytorch_model-00001-of-00005.bin",
414
+ "vision_model.encoder.layers.0.norm1.weight": "pytorch_model-00001-of-00005.bin",
415
+ "vision_model.encoder.layers.0.norm2.bias": "pytorch_model-00001-of-00005.bin",
416
+ "vision_model.encoder.layers.0.norm2.weight": "pytorch_model-00001-of-00005.bin",
417
+ "vision_model.encoder.layers.1.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
418
+ "vision_model.encoder.layers.1.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
419
+ "vision_model.encoder.layers.1.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
420
+ "vision_model.encoder.layers.1.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
421
+ "vision_model.encoder.layers.1.ls1": "pytorch_model-00001-of-00005.bin",
422
+ "vision_model.encoder.layers.1.ls2": "pytorch_model-00001-of-00005.bin",
423
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
424
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
425
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
426
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
427
+ "vision_model.encoder.layers.1.norm1.bias": "pytorch_model-00001-of-00005.bin",
428
+ "vision_model.encoder.layers.1.norm1.weight": "pytorch_model-00001-of-00005.bin",
429
+ "vision_model.encoder.layers.1.norm2.bias": "pytorch_model-00001-of-00005.bin",
430
+ "vision_model.encoder.layers.1.norm2.weight": "pytorch_model-00001-of-00005.bin",
431
+ "vision_model.encoder.layers.10.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
432
+ "vision_model.encoder.layers.10.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
433
+ "vision_model.encoder.layers.10.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
434
+ "vision_model.encoder.layers.10.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
435
+ "vision_model.encoder.layers.10.ls1": "pytorch_model-00001-of-00005.bin",
436
+ "vision_model.encoder.layers.10.ls2": "pytorch_model-00001-of-00005.bin",
437
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
438
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
439
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
440
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
441
+ "vision_model.encoder.layers.10.norm1.bias": "pytorch_model-00001-of-00005.bin",
442
+ "vision_model.encoder.layers.10.norm1.weight": "pytorch_model-00001-of-00005.bin",
443
+ "vision_model.encoder.layers.10.norm2.bias": "pytorch_model-00001-of-00005.bin",
444
+ "vision_model.encoder.layers.10.norm2.weight": "pytorch_model-00001-of-00005.bin",
445
+ "vision_model.encoder.layers.11.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
446
+ "vision_model.encoder.layers.11.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
447
+ "vision_model.encoder.layers.11.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
448
+ "vision_model.encoder.layers.11.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
449
+ "vision_model.encoder.layers.11.ls1": "pytorch_model-00001-of-00005.bin",
450
+ "vision_model.encoder.layers.11.ls2": "pytorch_model-00001-of-00005.bin",
451
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
452
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
453
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
454
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
455
+ "vision_model.encoder.layers.11.norm1.bias": "pytorch_model-00001-of-00005.bin",
456
+ "vision_model.encoder.layers.11.norm1.weight": "pytorch_model-00001-of-00005.bin",
457
+ "vision_model.encoder.layers.11.norm2.bias": "pytorch_model-00001-of-00005.bin",
458
+ "vision_model.encoder.layers.11.norm2.weight": "pytorch_model-00001-of-00005.bin",
459
+ "vision_model.encoder.layers.12.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
460
+ "vision_model.encoder.layers.12.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
461
+ "vision_model.encoder.layers.12.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
462
+ "vision_model.encoder.layers.12.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
463
+ "vision_model.encoder.layers.12.ls1": "pytorch_model-00001-of-00005.bin",
464
+ "vision_model.encoder.layers.12.ls2": "pytorch_model-00001-of-00005.bin",
465
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
466
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
467
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
468
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
469
+ "vision_model.encoder.layers.12.norm1.bias": "pytorch_model-00001-of-00005.bin",
470
+ "vision_model.encoder.layers.12.norm1.weight": "pytorch_model-00001-of-00005.bin",
471
+ "vision_model.encoder.layers.12.norm2.bias": "pytorch_model-00001-of-00005.bin",
472
+ "vision_model.encoder.layers.12.norm2.weight": "pytorch_model-00001-of-00005.bin",
473
+ "vision_model.encoder.layers.13.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
474
+ "vision_model.encoder.layers.13.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
475
+ "vision_model.encoder.layers.13.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
476
+ "vision_model.encoder.layers.13.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
477
+ "vision_model.encoder.layers.13.ls1": "pytorch_model-00001-of-00005.bin",
478
+ "vision_model.encoder.layers.13.ls2": "pytorch_model-00001-of-00005.bin",
479
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
480
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
481
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
482
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
483
+ "vision_model.encoder.layers.13.norm1.bias": "pytorch_model-00001-of-00005.bin",
484
+ "vision_model.encoder.layers.13.norm1.weight": "pytorch_model-00001-of-00005.bin",
485
+ "vision_model.encoder.layers.13.norm2.bias": "pytorch_model-00001-of-00005.bin",
486
+ "vision_model.encoder.layers.13.norm2.weight": "pytorch_model-00001-of-00005.bin",
487
+ "vision_model.encoder.layers.14.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
488
+ "vision_model.encoder.layers.14.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
489
+ "vision_model.encoder.layers.14.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
490
+ "vision_model.encoder.layers.14.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
491
+ "vision_model.encoder.layers.14.ls1": "pytorch_model-00001-of-00005.bin",
492
+ "vision_model.encoder.layers.14.ls2": "pytorch_model-00001-of-00005.bin",
493
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
494
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
495
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
496
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
497
+ "vision_model.encoder.layers.14.norm1.bias": "pytorch_model-00001-of-00005.bin",
498
+ "vision_model.encoder.layers.14.norm1.weight": "pytorch_model-00001-of-00005.bin",
499
+ "vision_model.encoder.layers.14.norm2.bias": "pytorch_model-00001-of-00005.bin",
500
+ "vision_model.encoder.layers.14.norm2.weight": "pytorch_model-00001-of-00005.bin",
501
+ "vision_model.encoder.layers.15.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
502
+ "vision_model.encoder.layers.15.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
503
+ "vision_model.encoder.layers.15.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
504
+ "vision_model.encoder.layers.15.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
505
+ "vision_model.encoder.layers.15.ls1": "pytorch_model-00001-of-00005.bin",
506
+ "vision_model.encoder.layers.15.ls2": "pytorch_model-00001-of-00005.bin",
507
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
508
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
509
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
510
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
511
+ "vision_model.encoder.layers.15.norm1.bias": "pytorch_model-00001-of-00005.bin",
512
+ "vision_model.encoder.layers.15.norm1.weight": "pytorch_model-00001-of-00005.bin",
513
+ "vision_model.encoder.layers.15.norm2.bias": "pytorch_model-00001-of-00005.bin",
514
+ "vision_model.encoder.layers.15.norm2.weight": "pytorch_model-00001-of-00005.bin",
515
+ "vision_model.encoder.layers.16.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
516
+ "vision_model.encoder.layers.16.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
517
+ "vision_model.encoder.layers.16.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
518
+ "vision_model.encoder.layers.16.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
519
+ "vision_model.encoder.layers.16.ls1": "pytorch_model-00001-of-00005.bin",
520
+ "vision_model.encoder.layers.16.ls2": "pytorch_model-00001-of-00005.bin",
521
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
522
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
523
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
524
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
525
+ "vision_model.encoder.layers.16.norm1.bias": "pytorch_model-00001-of-00005.bin",
526
+ "vision_model.encoder.layers.16.norm1.weight": "pytorch_model-00001-of-00005.bin",
527
+ "vision_model.encoder.layers.16.norm2.bias": "pytorch_model-00001-of-00005.bin",
528
+ "vision_model.encoder.layers.16.norm2.weight": "pytorch_model-00001-of-00005.bin",
529
+ "vision_model.encoder.layers.17.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
530
+ "vision_model.encoder.layers.17.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
531
+ "vision_model.encoder.layers.17.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
532
+ "vision_model.encoder.layers.17.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
533
+ "vision_model.encoder.layers.17.ls1": "pytorch_model-00001-of-00005.bin",
534
+ "vision_model.encoder.layers.17.ls2": "pytorch_model-00001-of-00005.bin",
535
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
536
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
537
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
538
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
539
+ "vision_model.encoder.layers.17.norm1.bias": "pytorch_model-00001-of-00005.bin",
540
+ "vision_model.encoder.layers.17.norm1.weight": "pytorch_model-00001-of-00005.bin",
541
+ "vision_model.encoder.layers.17.norm2.bias": "pytorch_model-00001-of-00005.bin",
542
+ "vision_model.encoder.layers.17.norm2.weight": "pytorch_model-00001-of-00005.bin",
543
+ "vision_model.encoder.layers.18.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
544
+ "vision_model.encoder.layers.18.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
545
+ "vision_model.encoder.layers.18.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
546
+ "vision_model.encoder.layers.18.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
547
+ "vision_model.encoder.layers.18.ls1": "pytorch_model-00001-of-00005.bin",
548
+ "vision_model.encoder.layers.18.ls2": "pytorch_model-00001-of-00005.bin",
549
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
550
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
551
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
552
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
553
+ "vision_model.encoder.layers.18.norm1.bias": "pytorch_model-00001-of-00005.bin",
554
+ "vision_model.encoder.layers.18.norm1.weight": "pytorch_model-00001-of-00005.bin",
555
+ "vision_model.encoder.layers.18.norm2.bias": "pytorch_model-00001-of-00005.bin",
556
+ "vision_model.encoder.layers.18.norm2.weight": "pytorch_model-00001-of-00005.bin",
557
+ "vision_model.encoder.layers.19.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
558
+ "vision_model.encoder.layers.19.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
559
+ "vision_model.encoder.layers.19.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
560
+ "vision_model.encoder.layers.19.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
561
+ "vision_model.encoder.layers.19.ls1": "pytorch_model-00001-of-00005.bin",
562
+ "vision_model.encoder.layers.19.ls2": "pytorch_model-00001-of-00005.bin",
563
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
564
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
565
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
566
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
567
+ "vision_model.encoder.layers.19.norm1.bias": "pytorch_model-00001-of-00005.bin",
568
+ "vision_model.encoder.layers.19.norm1.weight": "pytorch_model-00001-of-00005.bin",
569
+ "vision_model.encoder.layers.19.norm2.bias": "pytorch_model-00001-of-00005.bin",
570
+ "vision_model.encoder.layers.19.norm2.weight": "pytorch_model-00001-of-00005.bin",
571
+ "vision_model.encoder.layers.2.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
572
+ "vision_model.encoder.layers.2.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
573
+ "vision_model.encoder.layers.2.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
574
+ "vision_model.encoder.layers.2.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
575
+ "vision_model.encoder.layers.2.ls1": "pytorch_model-00001-of-00005.bin",
576
+ "vision_model.encoder.layers.2.ls2": "pytorch_model-00001-of-00005.bin",
577
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
578
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
579
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
580
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
581
+ "vision_model.encoder.layers.2.norm1.bias": "pytorch_model-00001-of-00005.bin",
582
+ "vision_model.encoder.layers.2.norm1.weight": "pytorch_model-00001-of-00005.bin",
583
+ "vision_model.encoder.layers.2.norm2.bias": "pytorch_model-00001-of-00005.bin",
584
+ "vision_model.encoder.layers.2.norm2.weight": "pytorch_model-00001-of-00005.bin",
585
+ "vision_model.encoder.layers.20.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
586
+ "vision_model.encoder.layers.20.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
587
+ "vision_model.encoder.layers.20.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
588
+ "vision_model.encoder.layers.20.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
589
+ "vision_model.encoder.layers.20.ls1": "pytorch_model-00001-of-00005.bin",
590
+ "vision_model.encoder.layers.20.ls2": "pytorch_model-00001-of-00005.bin",
591
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
592
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
593
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
594
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
595
+ "vision_model.encoder.layers.20.norm1.bias": "pytorch_model-00001-of-00005.bin",
596
+ "vision_model.encoder.layers.20.norm1.weight": "pytorch_model-00001-of-00005.bin",
597
+ "vision_model.encoder.layers.20.norm2.bias": "pytorch_model-00001-of-00005.bin",
598
+ "vision_model.encoder.layers.20.norm2.weight": "pytorch_model-00001-of-00005.bin",
599
+ "vision_model.encoder.layers.21.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
600
+ "vision_model.encoder.layers.21.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
601
+ "vision_model.encoder.layers.21.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
602
+ "vision_model.encoder.layers.21.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
603
+ "vision_model.encoder.layers.21.ls1": "pytorch_model-00001-of-00005.bin",
604
+ "vision_model.encoder.layers.21.ls2": "pytorch_model-00001-of-00005.bin",
605
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
606
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
607
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
608
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
609
+ "vision_model.encoder.layers.21.norm1.bias": "pytorch_model-00001-of-00005.bin",
610
+ "vision_model.encoder.layers.21.norm1.weight": "pytorch_model-00001-of-00005.bin",
611
+ "vision_model.encoder.layers.21.norm2.bias": "pytorch_model-00001-of-00005.bin",
612
+ "vision_model.encoder.layers.21.norm2.weight": "pytorch_model-00001-of-00005.bin",
613
+ "vision_model.encoder.layers.22.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
614
+ "vision_model.encoder.layers.22.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
615
+ "vision_model.encoder.layers.22.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
616
+ "vision_model.encoder.layers.22.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
617
+ "vision_model.encoder.layers.22.ls1": "pytorch_model-00001-of-00005.bin",
618
+ "vision_model.encoder.layers.22.ls2": "pytorch_model-00001-of-00005.bin",
619
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
620
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
621
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
622
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
623
+ "vision_model.encoder.layers.22.norm1.bias": "pytorch_model-00001-of-00005.bin",
624
+ "vision_model.encoder.layers.22.norm1.weight": "pytorch_model-00001-of-00005.bin",
625
+ "vision_model.encoder.layers.22.norm2.bias": "pytorch_model-00001-of-00005.bin",
626
+ "vision_model.encoder.layers.22.norm2.weight": "pytorch_model-00001-of-00005.bin",
627
+ "vision_model.encoder.layers.23.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
628
+ "vision_model.encoder.layers.23.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
629
+ "vision_model.encoder.layers.23.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
630
+ "vision_model.encoder.layers.23.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
631
+ "vision_model.encoder.layers.23.ls1": "pytorch_model-00001-of-00005.bin",
632
+ "vision_model.encoder.layers.23.ls2": "pytorch_model-00001-of-00005.bin",
633
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
634
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
635
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
636
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
637
+ "vision_model.encoder.layers.23.norm1.bias": "pytorch_model-00001-of-00005.bin",
638
+ "vision_model.encoder.layers.23.norm1.weight": "pytorch_model-00001-of-00005.bin",
639
+ "vision_model.encoder.layers.23.norm2.bias": "pytorch_model-00001-of-00005.bin",
640
+ "vision_model.encoder.layers.23.norm2.weight": "pytorch_model-00001-of-00005.bin",
641
+ "vision_model.encoder.layers.3.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
642
+ "vision_model.encoder.layers.3.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
643
+ "vision_model.encoder.layers.3.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
644
+ "vision_model.encoder.layers.3.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
645
+ "vision_model.encoder.layers.3.ls1": "pytorch_model-00001-of-00005.bin",
646
+ "vision_model.encoder.layers.3.ls2": "pytorch_model-00001-of-00005.bin",
647
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
648
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
649
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
650
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
651
+ "vision_model.encoder.layers.3.norm1.bias": "pytorch_model-00001-of-00005.bin",
652
+ "vision_model.encoder.layers.3.norm1.weight": "pytorch_model-00001-of-00005.bin",
653
+ "vision_model.encoder.layers.3.norm2.bias": "pytorch_model-00001-of-00005.bin",
654
+ "vision_model.encoder.layers.3.norm2.weight": "pytorch_model-00001-of-00005.bin",
655
+ "vision_model.encoder.layers.4.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
656
+ "vision_model.encoder.layers.4.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
657
+ "vision_model.encoder.layers.4.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
658
+ "vision_model.encoder.layers.4.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
659
+ "vision_model.encoder.layers.4.ls1": "pytorch_model-00001-of-00005.bin",
660
+ "vision_model.encoder.layers.4.ls2": "pytorch_model-00001-of-00005.bin",
661
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
662
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
663
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
664
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
665
+ "vision_model.encoder.layers.4.norm1.bias": "pytorch_model-00001-of-00005.bin",
666
+ "vision_model.encoder.layers.4.norm1.weight": "pytorch_model-00001-of-00005.bin",
667
+ "vision_model.encoder.layers.4.norm2.bias": "pytorch_model-00001-of-00005.bin",
668
+ "vision_model.encoder.layers.4.norm2.weight": "pytorch_model-00001-of-00005.bin",
669
+ "vision_model.encoder.layers.5.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
670
+ "vision_model.encoder.layers.5.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
671
+ "vision_model.encoder.layers.5.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
672
+ "vision_model.encoder.layers.5.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
673
+ "vision_model.encoder.layers.5.ls1": "pytorch_model-00001-of-00005.bin",
674
+ "vision_model.encoder.layers.5.ls2": "pytorch_model-00001-of-00005.bin",
675
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
676
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
677
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
678
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
679
+ "vision_model.encoder.layers.5.norm1.bias": "pytorch_model-00001-of-00005.bin",
680
+ "vision_model.encoder.layers.5.norm1.weight": "pytorch_model-00001-of-00005.bin",
681
+ "vision_model.encoder.layers.5.norm2.bias": "pytorch_model-00001-of-00005.bin",
682
+ "vision_model.encoder.layers.5.norm2.weight": "pytorch_model-00001-of-00005.bin",
683
+ "vision_model.encoder.layers.6.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
684
+ "vision_model.encoder.layers.6.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
685
+ "vision_model.encoder.layers.6.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
686
+ "vision_model.encoder.layers.6.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
687
+ "vision_model.encoder.layers.6.ls1": "pytorch_model-00001-of-00005.bin",
688
+ "vision_model.encoder.layers.6.ls2": "pytorch_model-00001-of-00005.bin",
689
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
690
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
691
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
692
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
693
+ "vision_model.encoder.layers.6.norm1.bias": "pytorch_model-00001-of-00005.bin",
694
+ "vision_model.encoder.layers.6.norm1.weight": "pytorch_model-00001-of-00005.bin",
695
+ "vision_model.encoder.layers.6.norm2.bias": "pytorch_model-00001-of-00005.bin",
696
+ "vision_model.encoder.layers.6.norm2.weight": "pytorch_model-00001-of-00005.bin",
697
+ "vision_model.encoder.layers.7.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
698
+ "vision_model.encoder.layers.7.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
699
+ "vision_model.encoder.layers.7.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
700
+ "vision_model.encoder.layers.7.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
701
+ "vision_model.encoder.layers.7.ls1": "pytorch_model-00001-of-00005.bin",
702
+ "vision_model.encoder.layers.7.ls2": "pytorch_model-00001-of-00005.bin",
703
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
704
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
705
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
706
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
707
+ "vision_model.encoder.layers.7.norm1.bias": "pytorch_model-00001-of-00005.bin",
708
+ "vision_model.encoder.layers.7.norm1.weight": "pytorch_model-00001-of-00005.bin",
709
+ "vision_model.encoder.layers.7.norm2.bias": "pytorch_model-00001-of-00005.bin",
710
+ "vision_model.encoder.layers.7.norm2.weight": "pytorch_model-00001-of-00005.bin",
711
+ "vision_model.encoder.layers.8.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
712
+ "vision_model.encoder.layers.8.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
713
+ "vision_model.encoder.layers.8.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
714
+ "vision_model.encoder.layers.8.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
715
+ "vision_model.encoder.layers.8.ls1": "pytorch_model-00001-of-00005.bin",
716
+ "vision_model.encoder.layers.8.ls2": "pytorch_model-00001-of-00005.bin",
717
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
718
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
719
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
720
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
721
+ "vision_model.encoder.layers.8.norm1.bias": "pytorch_model-00001-of-00005.bin",
722
+ "vision_model.encoder.layers.8.norm1.weight": "pytorch_model-00001-of-00005.bin",
723
+ "vision_model.encoder.layers.8.norm2.bias": "pytorch_model-00001-of-00005.bin",
724
+ "vision_model.encoder.layers.8.norm2.weight": "pytorch_model-00001-of-00005.bin",
725
+ "vision_model.encoder.layers.9.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
726
+ "vision_model.encoder.layers.9.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
727
+ "vision_model.encoder.layers.9.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
728
+ "vision_model.encoder.layers.9.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
729
+ "vision_model.encoder.layers.9.ls1": "pytorch_model-00001-of-00005.bin",
730
+ "vision_model.encoder.layers.9.ls2": "pytorch_model-00001-of-00005.bin",
731
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
732
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
733
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
734
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
735
+ "vision_model.encoder.layers.9.norm1.bias": "pytorch_model-00001-of-00005.bin",
736
+ "vision_model.encoder.layers.9.norm1.weight": "pytorch_model-00001-of-00005.bin",
737
+ "vision_model.encoder.layers.9.norm2.bias": "pytorch_model-00001-of-00005.bin",
738
+ "vision_model.encoder.layers.9.norm2.weight": "pytorch_model-00001-of-00005.bin"
739
+ }
740
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>",
18
+ "<action>",
19
+ "</action>",
20
+ "<cam>",
21
+ "</cam>"
22
+ ],
23
+ "bos_token": {
24
+ "content": "<s>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "eos_token": {
31
+ "content": "</s>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "pad_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "92553": {
148
+ "content": "<action>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "92554": {
156
+ "content": "</action>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "92555": {
164
+ "content": "<cam>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "92556": {
172
+ "content": "</cam>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ }
179
+ },
180
+ "additional_special_tokens": [
181
+ "<|im_start|>",
182
+ "<|im_end|>",
183
+ "<|action_start|>",
184
+ "<|action_end|>",
185
+ "<|interpreter|>",
186
+ "<|plugin|>",
187
+ "<img>",
188
+ "</img>",
189
+ "<IMG_CONTEXT>",
190
+ "<quad>",
191
+ "</quad>",
192
+ "<ref>",
193
+ "</ref>",
194
+ "<box>",
195
+ "</box>",
196
+ "<action>",
197
+ "</action>",
198
+ "<cam>",
199
+ "</cam>"
200
+ ],
201
+ "auto_map": {
202
+ "AutoTokenizer": [
203
+ "tokenization_internlm2.InternLM2Tokenizer",
204
+ null
205
+ ]
206
+ },
207
+ "bos_token": "<s>",
208
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
209
+ "clean_up_tokenization_spaces": false,
210
+ "eos_token": "</s>",
211
+ "model_max_length": 2048,
212
+ "pad_token": "</s>",
213
+ "tokenizer_class": "InternLM2Tokenizer",
214
+ "unk_token": "<unk>"
215
+ }