Upload folder using huggingface_hub
Browse files- added_tokens.json +15 -0
- config.json +204 -0
- configuration_intern_vit.py +119 -0
- configuration_internlm2.py +150 -0
- configuration_internvl_chat.py +96 -0
- conversation.py +393 -0
- generation_config.json +4 -0
- inputs_stats.pth +3 -0
- lmdeploy_infer.py +282 -0
- modeling_intern_vit.py +435 -0
- modeling_internlm2.py +1940 -0
- modeling_internvl_chat.py +346 -0
- outputs_stats.pth +3 -0
- preprocessor_config.json +19 -0
- pytorch_model-00001-of-00005.bin +3 -0
- pytorch_model-00002-of-00005.bin +3 -0
- pytorch_model-00003-of-00005.bin +3 -0
- pytorch_model-00004-of-00005.bin +3 -0
- pytorch_model-00005-of-00005.bin +3 -0
- pytorch_model.bin.index.json +740 -0
- special_tokens_map.json +51 -0
- tokenization_internlm2.py +235 -0
- tokenizer.model +3 -0
- tokenizer_config.json +215 -0
added_tokens.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</action>": 92554,
|
3 |
+
"</box>": 92552,
|
4 |
+
"</cam>": 92556,
|
5 |
+
"</img>": 92545,
|
6 |
+
"</quad>": 92548,
|
7 |
+
"</ref>": 92550,
|
8 |
+
"<IMG_CONTEXT>": 92546,
|
9 |
+
"<action>": 92553,
|
10 |
+
"<box>": 92551,
|
11 |
+
"<cam>": 92555,
|
12 |
+
"<img>": 92544,
|
13 |
+
"<quad>": 92547,
|
14 |
+
"<ref>": 92549
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1",
|
4 |
+
"architectures": [
|
5 |
+
"InternVLChatModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
9 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
11 |
+
},
|
12 |
+
"downsample_ratio": 0.5,
|
13 |
+
"dynamic_image_size": false,
|
14 |
+
"force_image_size": 448,
|
15 |
+
"llm_config": {
|
16 |
+
"_name_or_path": "internlm/internlm2_5-7b-chat",
|
17 |
+
"add_cross_attention": false,
|
18 |
+
"architectures": [
|
19 |
+
"InternLM2ForCausalLM"
|
20 |
+
],
|
21 |
+
"attn_implementation": "eager",
|
22 |
+
"auto_map": {
|
23 |
+
"AutoConfig": "configuration_internlm2.InternLMConfig",
|
24 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
25 |
+
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
|
26 |
+
},
|
27 |
+
"bad_words_ids": null,
|
28 |
+
"begin_suppress_tokens": null,
|
29 |
+
"bias": false,
|
30 |
+
"bos_token_id": 1,
|
31 |
+
"chunk_size_feed_forward": 0,
|
32 |
+
"cross_attention_hidden_size": null,
|
33 |
+
"decoder_start_token_id": null,
|
34 |
+
"diversity_penalty": 0.0,
|
35 |
+
"do_sample": false,
|
36 |
+
"early_stopping": false,
|
37 |
+
"encoder_no_repeat_ngram_size": 0,
|
38 |
+
"eos_token_id": 2,
|
39 |
+
"exponential_decay_length_penalty": null,
|
40 |
+
"finetuning_task": null,
|
41 |
+
"forced_bos_token_id": null,
|
42 |
+
"forced_eos_token_id": null,
|
43 |
+
"hidden_act": "silu",
|
44 |
+
"hidden_size": 4096,
|
45 |
+
"id2label": {
|
46 |
+
"0": "LABEL_0",
|
47 |
+
"1": "LABEL_1"
|
48 |
+
},
|
49 |
+
"initializer_range": 0.02,
|
50 |
+
"intermediate_size": 14336,
|
51 |
+
"is_decoder": false,
|
52 |
+
"is_encoder_decoder": false,
|
53 |
+
"label2id": {
|
54 |
+
"LABEL_0": 0,
|
55 |
+
"LABEL_1": 1
|
56 |
+
},
|
57 |
+
"length_penalty": 1.0,
|
58 |
+
"max_length": 20,
|
59 |
+
"max_position_embeddings": 32768,
|
60 |
+
"min_length": 0,
|
61 |
+
"model_type": "internlm2",
|
62 |
+
"no_repeat_ngram_size": 0,
|
63 |
+
"num_attention_heads": 32,
|
64 |
+
"num_beam_groups": 1,
|
65 |
+
"num_beams": 1,
|
66 |
+
"num_hidden_layers": 32,
|
67 |
+
"num_key_value_heads": 8,
|
68 |
+
"num_return_sequences": 1,
|
69 |
+
"output_attentions": false,
|
70 |
+
"output_hidden_states": false,
|
71 |
+
"output_scores": false,
|
72 |
+
"pad_token_id": 2,
|
73 |
+
"prefix": null,
|
74 |
+
"pretraining_tp": 1,
|
75 |
+
"problem_type": null,
|
76 |
+
"pruned_heads": {},
|
77 |
+
"remove_invalid_values": false,
|
78 |
+
"repetition_penalty": 1.0,
|
79 |
+
"return_dict": true,
|
80 |
+
"return_dict_in_generate": false,
|
81 |
+
"rms_norm_eps": 1e-05,
|
82 |
+
"rope_scaling": {
|
83 |
+
"factor": 2.0,
|
84 |
+
"type": "dynamic"
|
85 |
+
},
|
86 |
+
"rope_theta": 1000000,
|
87 |
+
"sep_token_id": null,
|
88 |
+
"suppress_tokens": null,
|
89 |
+
"task_specific_params": null,
|
90 |
+
"temperature": 1.0,
|
91 |
+
"tf_legacy_loss": false,
|
92 |
+
"tie_encoder_decoder": false,
|
93 |
+
"tie_word_embeddings": false,
|
94 |
+
"tokenizer_class": null,
|
95 |
+
"top_k": 50,
|
96 |
+
"top_p": 1.0,
|
97 |
+
"torch_dtype": "bfloat16",
|
98 |
+
"torchscript": false,
|
99 |
+
"transformers_version": "4.44.2",
|
100 |
+
"typical_p": 1.0,
|
101 |
+
"use_bfloat16": true,
|
102 |
+
"use_cache": false,
|
103 |
+
"vocab_size": 92557
|
104 |
+
},
|
105 |
+
"max_dynamic_patch": 6,
|
106 |
+
"min_dynamic_patch": 1,
|
107 |
+
"model_type": "internvl_chat",
|
108 |
+
"pad2square": false,
|
109 |
+
"ps_version": "v2",
|
110 |
+
"select_layer": -1,
|
111 |
+
"template": "internlm2-chat",
|
112 |
+
"torch_dtype": "float16",
|
113 |
+
"transformers_version": null,
|
114 |
+
"use_backbone_lora": 0,
|
115 |
+
"use_llm_lora": 0,
|
116 |
+
"use_thumbnail": true,
|
117 |
+
"vision_config": {
|
118 |
+
"_name_or_path": "",
|
119 |
+
"add_cross_attention": false,
|
120 |
+
"architectures": [
|
121 |
+
"InternVisionModel"
|
122 |
+
],
|
123 |
+
"attention_dropout": 0.0,
|
124 |
+
"bad_words_ids": null,
|
125 |
+
"begin_suppress_tokens": null,
|
126 |
+
"bos_token_id": null,
|
127 |
+
"chunk_size_feed_forward": 0,
|
128 |
+
"cross_attention_hidden_size": null,
|
129 |
+
"decoder_start_token_id": null,
|
130 |
+
"diversity_penalty": 0.0,
|
131 |
+
"do_sample": false,
|
132 |
+
"drop_path_rate": 0.1,
|
133 |
+
"dropout": 0.0,
|
134 |
+
"early_stopping": false,
|
135 |
+
"encoder_no_repeat_ngram_size": 0,
|
136 |
+
"eos_token_id": null,
|
137 |
+
"exponential_decay_length_penalty": null,
|
138 |
+
"finetuning_task": null,
|
139 |
+
"forced_bos_token_id": null,
|
140 |
+
"forced_eos_token_id": null,
|
141 |
+
"hidden_act": "gelu",
|
142 |
+
"hidden_size": 1024,
|
143 |
+
"id2label": {
|
144 |
+
"0": "LABEL_0",
|
145 |
+
"1": "LABEL_1"
|
146 |
+
},
|
147 |
+
"image_size": 448,
|
148 |
+
"initializer_factor": 1.0,
|
149 |
+
"initializer_range": 0.02,
|
150 |
+
"intermediate_size": 4096,
|
151 |
+
"is_decoder": false,
|
152 |
+
"is_encoder_decoder": false,
|
153 |
+
"label2id": {
|
154 |
+
"LABEL_0": 0,
|
155 |
+
"LABEL_1": 1
|
156 |
+
},
|
157 |
+
"layer_norm_eps": 1e-06,
|
158 |
+
"length_penalty": 1.0,
|
159 |
+
"max_length": 20,
|
160 |
+
"min_length": 0,
|
161 |
+
"model_type": "intern_vit_6b",
|
162 |
+
"no_repeat_ngram_size": 0,
|
163 |
+
"norm_type": "layer_norm",
|
164 |
+
"num_attention_heads": 16,
|
165 |
+
"num_beam_groups": 1,
|
166 |
+
"num_beams": 1,
|
167 |
+
"num_channels": 3,
|
168 |
+
"num_hidden_layers": 24,
|
169 |
+
"num_return_sequences": 1,
|
170 |
+
"output_attentions": false,
|
171 |
+
"output_hidden_states": false,
|
172 |
+
"output_scores": false,
|
173 |
+
"pad_token_id": null,
|
174 |
+
"patch_size": 14,
|
175 |
+
"prefix": null,
|
176 |
+
"problem_type": null,
|
177 |
+
"pruned_heads": {},
|
178 |
+
"qk_normalization": false,
|
179 |
+
"qkv_bias": true,
|
180 |
+
"remove_invalid_values": false,
|
181 |
+
"repetition_penalty": 1.0,
|
182 |
+
"return_dict": true,
|
183 |
+
"return_dict_in_generate": false,
|
184 |
+
"sep_token_id": null,
|
185 |
+
"suppress_tokens": null,
|
186 |
+
"task_specific_params": null,
|
187 |
+
"temperature": 1.0,
|
188 |
+
"tf_legacy_loss": false,
|
189 |
+
"tie_encoder_decoder": false,
|
190 |
+
"tie_word_embeddings": true,
|
191 |
+
"tokenizer_class": null,
|
192 |
+
"top_k": 50,
|
193 |
+
"top_p": 1.0,
|
194 |
+
"torch_dtype": "bfloat16",
|
195 |
+
"torchscript": false,
|
196 |
+
"transformers_version": "4.44.2",
|
197 |
+
"typical_p": 1.0,
|
198 |
+
"use_bfloat16": true,
|
199 |
+
"use_flash_attn": true
|
200 |
+
},
|
201 |
+
"with_camera_param": false,
|
202 |
+
"with_stn": false,
|
203 |
+
"with_wrist_camera": false
|
204 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class InternVisionConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
27 |
+
The size (resolution) of each patch.
|
28 |
+
image_size (`int`, *optional*, defaults to 224):
|
29 |
+
The size (resolution) of each image.
|
30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to use flash attention mechanism.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
48 |
+
The epsilon used by the layer normalization layers.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
52 |
+
Dropout rate for stochastic depth.
|
53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
58 |
+
A factor for layer scale.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_type = 'intern_vit_6b'
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
num_channels=3,
|
66 |
+
patch_size=14,
|
67 |
+
image_size=224,
|
68 |
+
qkv_bias=False,
|
69 |
+
hidden_size=3200,
|
70 |
+
num_attention_heads=25,
|
71 |
+
intermediate_size=12800,
|
72 |
+
qk_normalization=True,
|
73 |
+
num_hidden_layers=48,
|
74 |
+
use_flash_attn=True,
|
75 |
+
hidden_act='gelu',
|
76 |
+
norm_type='rms_norm',
|
77 |
+
layer_norm_eps=1e-6,
|
78 |
+
dropout=0.0,
|
79 |
+
drop_path_rate=0.0,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
initializer_range=0.02,
|
82 |
+
initializer_factor=0.1,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.intermediate_size = intermediate_size
|
89 |
+
self.dropout = dropout
|
90 |
+
self.drop_path_rate = drop_path_rate
|
91 |
+
self.num_hidden_layers = num_hidden_layers
|
92 |
+
self.num_attention_heads = num_attention_heads
|
93 |
+
self.num_channels = num_channels
|
94 |
+
self.patch_size = patch_size
|
95 |
+
self.image_size = image_size
|
96 |
+
self.initializer_range = initializer_range
|
97 |
+
self.initializer_factor = initializer_factor
|
98 |
+
self.attention_dropout = attention_dropout
|
99 |
+
self.layer_norm_eps = layer_norm_eps
|
100 |
+
self.hidden_act = hidden_act
|
101 |
+
self.norm_type = norm_type
|
102 |
+
self.qkv_bias = qkv_bias
|
103 |
+
self.qk_normalization = qk_normalization
|
104 |
+
self.use_flash_attn = use_flash_attn
|
105 |
+
|
106 |
+
@classmethod
|
107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
109 |
+
|
110 |
+
if 'vision_config' in config_dict:
|
111 |
+
config_dict = config_dict['vision_config']
|
112 |
+
|
113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
114 |
+
logger.warning(
|
115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
117 |
+
)
|
118 |
+
|
119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" InternLM2 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
27 |
+
class InternLM2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = 'internlm2'
|
75 |
+
_auto_class = 'AutoConfig'
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act='silu',
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=True,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation='eager',
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = 'eager'
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
141 |
+
f'got {self.rope_scaling}'
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
from .configuration_internlm2 import InternLM2Config
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class InternVLChatConfig(PretrainedConfig):
|
20 |
+
model_type = 'internvl_chat'
|
21 |
+
is_composition = True
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vision_config=None,
|
26 |
+
llm_config=None,
|
27 |
+
use_backbone_lora=0,
|
28 |
+
use_llm_lora=0,
|
29 |
+
select_layer=-1,
|
30 |
+
force_image_size=None,
|
31 |
+
downsample_ratio=0.5,
|
32 |
+
template=None,
|
33 |
+
dynamic_image_size=False,
|
34 |
+
use_thumbnail=False,
|
35 |
+
ps_version='v1',
|
36 |
+
min_dynamic_patch=1,
|
37 |
+
max_dynamic_patch=6,
|
38 |
+
**kwargs):
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
|
41 |
+
if vision_config is None:
|
42 |
+
vision_config = {}
|
43 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
44 |
+
|
45 |
+
if llm_config is None:
|
46 |
+
llm_config = {}
|
47 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
48 |
+
|
49 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
50 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
51 |
+
self.llm_config = LlamaConfig(**llm_config)
|
52 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
53 |
+
self.llm_config = InternLM2Config(**llm_config)
|
54 |
+
else:
|
55 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
56 |
+
self.use_backbone_lora = use_backbone_lora
|
57 |
+
self.use_llm_lora = use_llm_lora
|
58 |
+
self.select_layer = select_layer
|
59 |
+
self.force_image_size = force_image_size
|
60 |
+
self.downsample_ratio = downsample_ratio
|
61 |
+
self.template = template
|
62 |
+
self.dynamic_image_size = dynamic_image_size
|
63 |
+
self.use_thumbnail = use_thumbnail
|
64 |
+
self.ps_version = ps_version # pixel shuffle version
|
65 |
+
self.min_dynamic_patch = min_dynamic_patch
|
66 |
+
self.max_dynamic_patch = max_dynamic_patch
|
67 |
+
|
68 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
69 |
+
logger.info(f'ps_version: {self.ps_version}')
|
70 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
71 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
72 |
+
|
73 |
+
def to_dict(self):
|
74 |
+
"""
|
75 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
79 |
+
"""
|
80 |
+
output = copy.deepcopy(self.__dict__)
|
81 |
+
output['vision_config'] = self.vision_config.to_dict()
|
82 |
+
output['llm_config'] = self.llm_config.to_dict()
|
83 |
+
output['model_type'] = self.__class__.model_type
|
84 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
85 |
+
output['use_llm_lora'] = self.use_llm_lora
|
86 |
+
output['select_layer'] = self.select_layer
|
87 |
+
output['force_image_size'] = self.force_image_size
|
88 |
+
output['downsample_ratio'] = self.downsample_ratio
|
89 |
+
output['template'] = self.template
|
90 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
91 |
+
output['use_thumbnail'] = self.use_thumbnail
|
92 |
+
output['ps_version'] = self.ps_version
|
93 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
94 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
95 |
+
|
96 |
+
return output
|
conversation.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
CHATINTERN = auto()
|
26 |
+
DOLLY = auto()
|
27 |
+
RWKV = auto()
|
28 |
+
PHOENIX = auto()
|
29 |
+
ROBIN = auto()
|
30 |
+
FALCON_CHAT = auto()
|
31 |
+
CHATGLM3 = auto()
|
32 |
+
INTERNVL_ZH = auto()
|
33 |
+
MPT = auto()
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class Conversation:
|
38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
39 |
+
|
40 |
+
# The name of this template
|
41 |
+
name: str
|
42 |
+
# The template of the system prompt
|
43 |
+
system_template: str = '{system_message}'
|
44 |
+
# The system message
|
45 |
+
system_message: str = ''
|
46 |
+
# The names of two roles
|
47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
48 |
+
# All messages. Each item is (role, message).
|
49 |
+
messages: List[List[str]] = ()
|
50 |
+
# The number of few shot examples
|
51 |
+
offset: int = 0
|
52 |
+
# The separator style and configurations
|
53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
54 |
+
sep: str = '\n'
|
55 |
+
sep2: str = None
|
56 |
+
# Stop criteria (the default one is EOS token)
|
57 |
+
stop_str: Union[str, List[str]] = None
|
58 |
+
# Stops generation if meeting any token in this list
|
59 |
+
stop_token_ids: List[int] = None
|
60 |
+
|
61 |
+
def get_prompt(self) -> str:
|
62 |
+
"""Get the prompt for generation."""
|
63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
65 |
+
ret = system_prompt + self.sep
|
66 |
+
for role, message in self.messages:
|
67 |
+
if message:
|
68 |
+
ret += role + ': ' + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ':'
|
71 |
+
return ret
|
72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
73 |
+
seps = [self.sep, self.sep2]
|
74 |
+
ret = system_prompt + seps[0]
|
75 |
+
for i, (role, message) in enumerate(self.messages):
|
76 |
+
if message:
|
77 |
+
ret += role + ': ' + message + seps[i % 2]
|
78 |
+
else:
|
79 |
+
ret += role + ':'
|
80 |
+
return ret
|
81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
82 |
+
ret = system_prompt + self.sep
|
83 |
+
for role, message in self.messages:
|
84 |
+
if message:
|
85 |
+
ret += role + ': ' + message + self.sep
|
86 |
+
else:
|
87 |
+
ret += role + ': ' # must be end with a space
|
88 |
+
return ret
|
89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
91 |
+
for role, message in self.messages:
|
92 |
+
if message:
|
93 |
+
ret += role + '\n' + message + self.sep
|
94 |
+
else:
|
95 |
+
ret += role + '\n'
|
96 |
+
return ret
|
97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
98 |
+
ret = system_prompt
|
99 |
+
for role, message in self.messages:
|
100 |
+
if message:
|
101 |
+
ret += role + message + self.sep
|
102 |
+
else:
|
103 |
+
ret += role
|
104 |
+
return ret
|
105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = system_prompt
|
108 |
+
for i, (role, message) in enumerate(self.messages):
|
109 |
+
if message:
|
110 |
+
ret += role + message + seps[i % 2]
|
111 |
+
else:
|
112 |
+
ret += role
|
113 |
+
return ret
|
114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
115 |
+
ret = system_prompt
|
116 |
+
for i, (role, message) in enumerate(self.messages):
|
117 |
+
if message:
|
118 |
+
ret += (
|
119 |
+
role
|
120 |
+
+ ': '
|
121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
122 |
+
)
|
123 |
+
ret += '\n\n'
|
124 |
+
else:
|
125 |
+
ret += role + ':'
|
126 |
+
return ret
|
127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
128 |
+
seps = [self.sep, self.sep2]
|
129 |
+
if self.system_message:
|
130 |
+
ret = system_prompt
|
131 |
+
else:
|
132 |
+
ret = '[INST] '
|
133 |
+
for i, (role, message) in enumerate(self.messages):
|
134 |
+
tag = self.roles[i % 2]
|
135 |
+
if message:
|
136 |
+
if i == 0:
|
137 |
+
ret += message + ' '
|
138 |
+
else:
|
139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
140 |
+
else:
|
141 |
+
ret += tag
|
142 |
+
return ret
|
143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
147 |
+
if system_prompt:
|
148 |
+
ret = system_prompt + self.sep
|
149 |
+
else:
|
150 |
+
ret = ''
|
151 |
+
|
152 |
+
for i, (role, message) in enumerate(self.messages):
|
153 |
+
if i % 2 == 0:
|
154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
155 |
+
|
156 |
+
if message:
|
157 |
+
ret += f'{role}:{message}{self.sep}'
|
158 |
+
else:
|
159 |
+
ret += f'{role}:'
|
160 |
+
return ret
|
161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
163 |
+
for role, message in self.messages:
|
164 |
+
if message:
|
165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
166 |
+
else:
|
167 |
+
ret += role + '\n'
|
168 |
+
return ret
|
169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
170 |
+
ret = ''
|
171 |
+
if self.system_message:
|
172 |
+
ret += system_prompt
|
173 |
+
for role, message in self.messages:
|
174 |
+
if message:
|
175 |
+
ret += role + '\n' + ' ' + message
|
176 |
+
else:
|
177 |
+
ret += role
|
178 |
+
return ret
|
179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
181 |
+
seps = [self.sep, self.sep2]
|
182 |
+
ret = system_prompt
|
183 |
+
for i, (role, message) in enumerate(self.messages):
|
184 |
+
# if i % 2 == 0:
|
185 |
+
# ret += "<s>"
|
186 |
+
if message:
|
187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
188 |
+
else:
|
189 |
+
ret += role + ':'
|
190 |
+
return ret
|
191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
192 |
+
seps = [self.sep, self.sep2]
|
193 |
+
ret = system_prompt
|
194 |
+
for i, (role, message) in enumerate(self.messages):
|
195 |
+
if message:
|
196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
197 |
+
if i % 2 == 1:
|
198 |
+
ret += '\n\n'
|
199 |
+
else:
|
200 |
+
ret += role + ':\n'
|
201 |
+
return ret
|
202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
203 |
+
ret = system_prompt
|
204 |
+
for role, message in self.messages:
|
205 |
+
if message:
|
206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
207 |
+
else:
|
208 |
+
ret += role + ': ' + '<s>'
|
209 |
+
return ret
|
210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
211 |
+
ret = system_prompt + self.sep
|
212 |
+
for role, message in self.messages:
|
213 |
+
if message:
|
214 |
+
ret += role + ':\n' + message + self.sep
|
215 |
+
else:
|
216 |
+
ret += role + ':\n'
|
217 |
+
return ret
|
218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
219 |
+
ret = ''
|
220 |
+
if self.system_message:
|
221 |
+
ret += system_prompt + self.sep
|
222 |
+
for role, message in self.messages:
|
223 |
+
if message:
|
224 |
+
ret += role + ': ' + message + self.sep
|
225 |
+
else:
|
226 |
+
ret += role + ':'
|
227 |
+
|
228 |
+
return ret
|
229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
230 |
+
seps = [self.sep, self.sep2]
|
231 |
+
ret = self.system_message + seps[0]
|
232 |
+
for i, (role, message) in enumerate(self.messages):
|
233 |
+
if message:
|
234 |
+
ret += role + ': ' + message + seps[i % 2]
|
235 |
+
else:
|
236 |
+
ret += role + ':'
|
237 |
+
return ret
|
238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
239 |
+
ret = system_prompt + self.sep
|
240 |
+
for role, message in self.messages:
|
241 |
+
if message:
|
242 |
+
if type(message) is tuple:
|
243 |
+
message, _, _ = message
|
244 |
+
ret += role + message + self.sep
|
245 |
+
else:
|
246 |
+
ret += role
|
247 |
+
return ret
|
248 |
+
else:
|
249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
250 |
+
|
251 |
+
def set_system_message(self, system_message: str):
|
252 |
+
"""Set the system message."""
|
253 |
+
self.system_message = system_message
|
254 |
+
|
255 |
+
def append_message(self, role: str, message: str):
|
256 |
+
"""Append a new message."""
|
257 |
+
self.messages.append([role, message])
|
258 |
+
|
259 |
+
def update_last_message(self, message: str):
|
260 |
+
"""Update the last output.
|
261 |
+
|
262 |
+
The last message is typically set to be None when constructing the prompt,
|
263 |
+
so we need to update it in-place after getting the response from a model.
|
264 |
+
"""
|
265 |
+
self.messages[-1][1] = message
|
266 |
+
|
267 |
+
def to_gradio_chatbot(self):
|
268 |
+
"""Convert the conversation to gradio chatbot format."""
|
269 |
+
ret = []
|
270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
271 |
+
if i % 2 == 0:
|
272 |
+
ret.append([msg, None])
|
273 |
+
else:
|
274 |
+
ret[-1][-1] = msg
|
275 |
+
return ret
|
276 |
+
|
277 |
+
def to_openai_api_messages(self):
|
278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
280 |
+
|
281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
282 |
+
if i % 2 == 0:
|
283 |
+
ret.append({'role': 'user', 'content': msg})
|
284 |
+
else:
|
285 |
+
if msg is not None:
|
286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
287 |
+
return ret
|
288 |
+
|
289 |
+
def copy(self):
|
290 |
+
return Conversation(
|
291 |
+
name=self.name,
|
292 |
+
system_template=self.system_template,
|
293 |
+
system_message=self.system_message,
|
294 |
+
roles=self.roles,
|
295 |
+
messages=[[x, y] for x, y in self.messages],
|
296 |
+
offset=self.offset,
|
297 |
+
sep_style=self.sep_style,
|
298 |
+
sep=self.sep,
|
299 |
+
sep2=self.sep2,
|
300 |
+
stop_str=self.stop_str,
|
301 |
+
stop_token_ids=self.stop_token_ids,
|
302 |
+
)
|
303 |
+
|
304 |
+
def dict(self):
|
305 |
+
return {
|
306 |
+
'template_name': self.name,
|
307 |
+
'system_message': self.system_message,
|
308 |
+
'roles': self.roles,
|
309 |
+
'messages': self.messages,
|
310 |
+
'offset': self.offset,
|
311 |
+
}
|
312 |
+
|
313 |
+
|
314 |
+
# A global registry for all conversation templates
|
315 |
+
conv_templates: Dict[str, Conversation] = {}
|
316 |
+
|
317 |
+
|
318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
319 |
+
"""Register a new conversation template."""
|
320 |
+
if not override:
|
321 |
+
assert (
|
322 |
+
template.name not in conv_templates
|
323 |
+
), f'{template.name} has been registered.'
|
324 |
+
|
325 |
+
conv_templates[template.name] = template
|
326 |
+
|
327 |
+
|
328 |
+
def get_conv_template(name: str) -> Conversation:
|
329 |
+
"""Get a conversation template."""
|
330 |
+
return conv_templates[name].copy()
|
331 |
+
|
332 |
+
|
333 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
334 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
335 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
336 |
+
# Therefore, they are completely equivalent during inference.
|
337 |
+
register_conv_template(
|
338 |
+
Conversation(
|
339 |
+
name='Hermes-2',
|
340 |
+
system_template='<|im_start|>system\n{system_message}',
|
341 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
342 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
343 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
344 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
345 |
+
sep_style=SeparatorStyle.MPT,
|
346 |
+
sep='<|im_end|>',
|
347 |
+
stop_token_ids=[
|
348 |
+
2,
|
349 |
+
6,
|
350 |
+
7,
|
351 |
+
8,
|
352 |
+
],
|
353 |
+
stop_str='<|endoftext|>',
|
354 |
+
)
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
register_conv_template(
|
359 |
+
Conversation(
|
360 |
+
name='internlm2-chat',
|
361 |
+
system_template='<|im_start|>system\n{system_message}',
|
362 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
363 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
364 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
365 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
366 |
+
sep_style=SeparatorStyle.MPT,
|
367 |
+
sep='<|im_end|>',
|
368 |
+
stop_token_ids=[
|
369 |
+
2,
|
370 |
+
92543,
|
371 |
+
92542
|
372 |
+
]
|
373 |
+
)
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
register_conv_template(
|
378 |
+
Conversation(
|
379 |
+
name='phi3-chat',
|
380 |
+
system_template='<|system|>\n{system_message}',
|
381 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
382 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
383 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
384 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
385 |
+
sep_style=SeparatorStyle.MPT,
|
386 |
+
sep='<|end|>',
|
387 |
+
stop_token_ids=[
|
388 |
+
2,
|
389 |
+
32000,
|
390 |
+
32007
|
391 |
+
]
|
392 |
+
)
|
393 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.37.2"
|
4 |
+
}
|
inputs_stats.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a0609596e7dc688356ffbc2f83536fad7694ee76aaf1e7fec0661316bbde5b
|
3 |
+
size 10054886
|
lmdeploy_infer.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
import ast
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import List, Union
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from PIL import Image, ImageFile
|
9 |
+
import numpy as np
|
10 |
+
from scipy.spatial.transform import Rotation
|
11 |
+
|
12 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, PytorchEngineConfig
|
13 |
+
IMAGE_TOKEN = '<IMAGE_TOKEN>'
|
14 |
+
|
15 |
+
def normalize_quaternion(quat):
|
16 |
+
return np.array(quat) / np.linalg.norm(quat, axis=-1, keepdims=True)
|
17 |
+
|
18 |
+
def quaternion_to_discrete_euler(quaternion, bins_num=256):
|
19 |
+
euler = Rotation.from_quat(quaternion).as_euler('xyz', degrees=True) + 180
|
20 |
+
resolution = 360 / bins_num
|
21 |
+
disc = np.around((euler / resolution)).astype(int)
|
22 |
+
disc[disc == bins_num] = 0
|
23 |
+
return disc
|
24 |
+
|
25 |
+
def discrete_euler_to_quaternion(discrete_euler, bins_num=256):
|
26 |
+
resolution = 360 / bins_num
|
27 |
+
euler = (discrete_euler * resolution) - 180
|
28 |
+
return Rotation.from_euler('xyz', euler, degrees=True).as_quat()
|
29 |
+
|
30 |
+
|
31 |
+
class RotationActionDiscretizer:
|
32 |
+
def __init__(self, bins_num=256, min_action=-1, max_action=1):
|
33 |
+
"""
|
34 |
+
Note: the input action is quaternion
|
35 |
+
Args: bins_num: Number of bins to discretize the rotation space into.
|
36 |
+
"""
|
37 |
+
self.bins_num = bins_num
|
38 |
+
|
39 |
+
def discretize(self, action: Union[np.ndarray, List[float]], degrees=False):
|
40 |
+
# Check if the input action is quaternion or euler
|
41 |
+
if len(action) == 4:
|
42 |
+
return quaternion_to_discrete_euler(normalize_quaternion(action), bins_num=self.bins_num)
|
43 |
+
else:
|
44 |
+
return quaternion_to_discrete_euler(
|
45 |
+
normalize_quaternion(Rotation.from_euler('xyz', action, degrees=degrees).as_quat()),
|
46 |
+
bins_num=self.bins_num
|
47 |
+
)
|
48 |
+
|
49 |
+
def undiscretize(self, discrete_action):
|
50 |
+
return normalize_quaternion(discrete_euler_to_quaternion(discrete_action, bins_num=self.bins_num))
|
51 |
+
|
52 |
+
def get_action_space(self):
|
53 |
+
return self.bins_num
|
54 |
+
|
55 |
+
def generate_discrete_special_tokens(self)-> List[str]:
|
56 |
+
return [f"<rot{i}>" for i in range(self.bins_num)]
|
57 |
+
|
58 |
+
def map_4d_quaternion_to_special_tokens(self, action) -> List[str]:
|
59 |
+
discretiezd_action = self.discretize(action)
|
60 |
+
return [f"<rot{action}>" for action in discretiezd_action]
|
61 |
+
|
62 |
+
def map_roll_pitch_yaw_to_special_tokens(self, roll_pitch_yaw: Union[np.ndarray, List[float]], degrees=False) -> List[str]:
|
63 |
+
discretized_action = self.discretize(roll_pitch_yaw, degrees)
|
64 |
+
return [f"<rot{a}>" for a in discretized_action]
|
65 |
+
|
66 |
+
|
67 |
+
class TranslationActionDiscretizer:
|
68 |
+
def __init__(self, bins_num=256, min_action=-1, max_action=1):
|
69 |
+
self.bins_num = bins_num
|
70 |
+
self.min_action = min_action
|
71 |
+
self.max_action = max_action
|
72 |
+
|
73 |
+
# Create Uniform Bins + Compute Bin Centers
|
74 |
+
self.bins = np.linspace(min_action, max_action, bins_num)
|
75 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
76 |
+
|
77 |
+
def discretize(self, action: np.ndarray):
|
78 |
+
action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
|
79 |
+
discretized_action = np.digitize(action, self.bins)
|
80 |
+
return discretized_action
|
81 |
+
|
82 |
+
def undiscretize(self, discrete_action):
|
83 |
+
"""
|
84 |
+
NOTE =>> Because of the way the actions are discretized w.r.t. the bins (and not the bin centers), the
|
85 |
+
digitization returns bin indices between [1, # bins], inclusive, when there are actually only
|
86 |
+
(# bins - 1) bin intervals.
|
87 |
+
|
88 |
+
Therefore, if the digitization returns the last possible index, we map this to the last bin interval.
|
89 |
+
|
90 |
+
EXAMPLE =>> Let's say self._bins has 256 values. Then self._bin_centers has 255 values. Digitization returns
|
91 |
+
indices between [1, 256]. We subtract 1 from all indices so that they are between [0, 255]. There
|
92 |
+
is still one index (i==255) that would cause an out-of-bounds error if used to index into
|
93 |
+
self._bin_centers. Therefore, if i==255, we subtract 1 from it so that it just becomes the index of
|
94 |
+
the last bin center. We implement this simply via clipping between [0, 255 - 1].
|
95 |
+
"""
|
96 |
+
|
97 |
+
discrete_action = np.clip(discrete_action - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
98 |
+
undiscretized_action = self.bin_centers[discrete_action]
|
99 |
+
|
100 |
+
# Clamp the result to the action bounds
|
101 |
+
return np.clip(undiscretized_action, self.min_action, self.max_action)
|
102 |
+
|
103 |
+
def get_action_space(self):
|
104 |
+
return self.bins_num
|
105 |
+
|
106 |
+
def generate_discrete_special_tokens(self)-> List[str]:
|
107 |
+
return [f"<loc{i}>" for i in range(self.bins_num)]
|
108 |
+
|
109 |
+
def map_3d_action_to_special_tokens(self, action) -> List[str]:
|
110 |
+
discretiezd_action = self.discretize(action)
|
111 |
+
return [f"<loc{action}>" for action in discretiezd_action]
|
112 |
+
|
113 |
+
|
114 |
+
class OpennessActionDiscretizer:
|
115 |
+
def __init__(self, bins_num=256, min_openness=0, max_openness=1):
|
116 |
+
"""
|
117 |
+
Args:
|
118 |
+
bins_num: Number of bins to discretize the openness space into.
|
119 |
+
min_openness: Minimum openness of the gripper.
|
120 |
+
max_openness: Maximum openness of the gripper.
|
121 |
+
"""
|
122 |
+
self.bins_num = bins_num
|
123 |
+
self.min_openness = min_openness
|
124 |
+
self.max_openness = max_openness
|
125 |
+
|
126 |
+
# Create Uniform Bins + Compute Bin Centers
|
127 |
+
self.bins = np.linspace(min_openness, max_openness, bins_num)
|
128 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
129 |
+
|
130 |
+
def discretize(self, openness: float):
|
131 |
+
openness = np.clip(openness, a_min=self.min_openness, a_max=self.max_openness)
|
132 |
+
discretized_openness = np.digitize(openness, self.bins)
|
133 |
+
return discretized_openness
|
134 |
+
|
135 |
+
def undiscretize(self, discrete_openness):
|
136 |
+
discrete_openness = np.clip(discrete_openness - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
137 |
+
return self.bin_centers[discrete_openness]
|
138 |
+
|
139 |
+
def get_action_space(self):
|
140 |
+
return self.bins_num
|
141 |
+
|
142 |
+
def generate_discrete_special_tokens(self) -> List[str]:
|
143 |
+
return [f"<open{i}>" for i in range(self.bins_num)]
|
144 |
+
|
145 |
+
def map_openness_to_special_tokens(self, openness) -> List[str]:
|
146 |
+
discretized_openness = self.discretize(openness)
|
147 |
+
return [f"<open{discretized_openness}>"]
|
148 |
+
|
149 |
+
# def construct_lmdeploy_tasks(jsonl_path):
|
150 |
+
# data = load_jsonl(jsonl_path)
|
151 |
+
|
152 |
+
# lmdeploy_tasks = []
|
153 |
+
# for sample_idx, item in enumerate(data):
|
154 |
+
|
155 |
+
# langs = item["conversations"][0]["value"]
|
156 |
+
# langs = langs.replace("<image>", IMAGE_TOKEN)
|
157 |
+
# image_urls = [
|
158 |
+
# os.path.join(sample_save_folder, f"{sample_idx}_{im_idx}.png") for im_idx in range(len(item["image"]))
|
159 |
+
# ]
|
160 |
+
# gt_lang = item["conversations"][1]["value"]
|
161 |
+
# lmdeploy_tasks.append((langs, image_urls, gt_lang))
|
162 |
+
|
163 |
+
# return lmdeploy_tasks
|
164 |
+
|
165 |
+
def load_image_from_base64(image: Union[bytes, str]) -> Image.Image:
|
166 |
+
"""load image from base64 format."""
|
167 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
168 |
+
|
169 |
+
def load_image(image_url: Union[str, Image.Image]) -> Image.Image:
|
170 |
+
"""load image from url, local path or openai GPT4V."""
|
171 |
+
FETCH_TIMEOUT = int(os.environ.get('LMDEPLOY_FETCH_TIMEOUT', 10))
|
172 |
+
headers = {
|
173 |
+
'User-Agent':
|
174 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
|
175 |
+
'(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
|
176 |
+
}
|
177 |
+
try:
|
178 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
179 |
+
if isinstance(image_url, Image.Image):
|
180 |
+
img = image_url
|
181 |
+
else:
|
182 |
+
# Load image from local path
|
183 |
+
img = Image.open(image_url)
|
184 |
+
|
185 |
+
# check image valid
|
186 |
+
img = img.convert('RGB')
|
187 |
+
except Exception as error:
|
188 |
+
if isinstance(image_url, str) and len(image_url) > 100:
|
189 |
+
image_url = image_url[:100] + ' ...'
|
190 |
+
print(f'{error}, image_url={image_url}')
|
191 |
+
# use dummy image
|
192 |
+
img = Image.new('RGB', (32, 32))
|
193 |
+
|
194 |
+
return img
|
195 |
+
|
196 |
+
# Function to print GPU memory usage
|
197 |
+
def print_gpu_memory():
|
198 |
+
if torch.cuda.is_available():
|
199 |
+
allocated_memory = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
200 |
+
cached_memory = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
201 |
+
print(f"Allocated GPU Memory: {allocated_memory:.2f} MB")
|
202 |
+
print(f"Cached GPU Memory: {cached_memory:.2f} MB")
|
203 |
+
else:
|
204 |
+
print("CUDA is not available.")
|
205 |
+
|
206 |
+
print_gpu_memory()
|
207 |
+
model = '/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit'
|
208 |
+
if "bit" in model:
|
209 |
+
pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
|
210 |
+
else:
|
211 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
|
212 |
+
# pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5, quant_policy=8), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
|
213 |
+
print_gpu_memory()
|
214 |
+
|
215 |
+
TRANS_MAX = 0.275
|
216 |
+
TRANS_MIN = -0.275
|
217 |
+
|
218 |
+
ROT_MIN = -0.350
|
219 |
+
ROT_MAX = 0.395
|
220 |
+
|
221 |
+
OPEN_MIN = -0.388
|
222 |
+
OPEN_MAX = 0.300
|
223 |
+
|
224 |
+
translation_bins_num = 256
|
225 |
+
rotation_bins_num = 256
|
226 |
+
openness_bins_num = 256
|
227 |
+
translation_action_discretizer = TranslationActionDiscretizer(bins_num=translation_bins_num, max_action=TRANS_MAX, min_action=TRANS_MIN)
|
228 |
+
rotation_action_discretizer = RotationActionDiscretizer(bins_num=rotation_bins_num, min_action=ROT_MIN, max_action=ROT_MAX)
|
229 |
+
openness_action_discretizer = OpennessActionDiscretizer(bins_num=openness_bins_num, min_openness=OPEN_MIN, max_openness=OPEN_MAX)
|
230 |
+
|
231 |
+
VQA_FORMAT = f"{IMAGE_TOKEN}\n {IMAGE_TOKEN}\n Given the observation images from the wrist camera mounted at CAM_PARAM and the overhead camera mounted at CAM_PARAM, please provide the action that the robot should take to finish the task: TASK"
|
232 |
+
# question_template = "<image>\n <image>\n Given the observation images from the wrist camera mounted at <cam>[256,89,256,236,129,181]</cam> and the overhead camera mounted at <cam>[82,1,256,54,128,98]</cam>, please provide the action that the robot should take to finish the task: place a chess piece on the chessboar"
|
233 |
+
|
234 |
+
# cam_params xyz-rpy
|
235 |
+
wrist_cam_pose = [0.3618544138321802, -0.08323374464523976, 0.41759402329169787, 2.6584232953914344, 0.035482430406705845, 1.2906347836099603]
|
236 |
+
overhead_cam_pose = [-0.09877916942983442, -0.3919519409041736, 0.4780865865815033, -1.8237694898473762, -0.012183613523460979, -0.746683044221379]
|
237 |
+
cam_pose_list = [wrist_cam_pose, overhead_cam_pose]
|
238 |
+
for cam_pose in cam_pose_list:
|
239 |
+
cam_xyz_token = translation_action_discretizer.discretize(np.array(cam_pose[:3]))
|
240 |
+
cam_rpy_token = rotation_action_discretizer.discretize(np.array(cam_pose[3:6]))
|
241 |
+
cam_action_tokens = [cam_xyz_token[0], cam_xyz_token[1], cam_xyz_token[2], cam_rpy_token[0], cam_rpy_token[1], cam_rpy_token[2]]
|
242 |
+
cam_action_tokens_str = "<cam>[" + ",".join(map(str, cam_action_tokens)) + "]</cam>"
|
243 |
+
VQA_FORMAT = VQA_FORMAT.replace("CAM_PARAM", cam_action_tokens_str, 1)
|
244 |
+
|
245 |
+
# task lang
|
246 |
+
task = "Pick up the green object from the table and put it in the bowl"
|
247 |
+
VQA_FORMAT = VQA_FORMAT.replace("TASK", task)
|
248 |
+
|
249 |
+
img1 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_0.png"
|
250 |
+
img2 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_1.png"
|
251 |
+
images = [load_image(img1), load_image(img2)] # only need to return the PIL.Image object
|
252 |
+
response = pipe((VQA_FORMAT, images))
|
253 |
+
print(response.text)
|
254 |
+
print("gt: [124,137,104,126,130,129,233]")
|
255 |
+
action_list = np.array(ast.literal_eval(response.text))
|
256 |
+
xyz = translation_action_discretizer.undiscretize(action_list[:3])
|
257 |
+
rpy = rotation_action_discretizer.undiscretize(action_list[3:6])
|
258 |
+
openness = openness_action_discretizer.undiscretize(action_list[6])
|
259 |
+
|
260 |
+
print(f"xyz: {xyz}, rpy: {rpy}, openness: {openness}")
|
261 |
+
|
262 |
+
# srun --jobid 16125415 -n1 python lmdeploy_infer.py
|
263 |
+
"""
|
264 |
+
# quant to 8bit
|
265 |
+
export HF_MODEL=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1
|
266 |
+
export WORK_DIR=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit
|
267 |
+
|
268 |
+
srun --jobid 16125415 -n1 lmdeploy lite auto_awq \
|
269 |
+
$HF_MODEL \
|
270 |
+
--calib-dataset 'ptb' \
|
271 |
+
--calib-samples 128 \
|
272 |
+
--calib-seqlen 2048 \
|
273 |
+
--w-bits 4 \
|
274 |
+
--w-group-size 128 \
|
275 |
+
--batch-size 16 \
|
276 |
+
--search-scale True \
|
277 |
+
--work-dir $WORK_DIR
|
278 |
+
|
279 |
+
# 8bit
|
280 |
+
srun --jobid 16125415 -n1 lmdeploy lite smooth_quant $HF_MODEL --work-dir $WORK_DIR
|
281 |
+
|
282 |
+
"""
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
try: # v1
|
24 |
+
from flash_attn.flash_attn_interface import \
|
25 |
+
flash_attn_unpadded_qkvpacked_func
|
26 |
+
except: # v2
|
27 |
+
from flash_attn.flash_attn_interface import \
|
28 |
+
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
29 |
+
|
30 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
31 |
+
|
32 |
+
has_flash_attn = True
|
33 |
+
except:
|
34 |
+
print('FlashAttention is not installed.')
|
35 |
+
has_flash_attn = False
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class FlashAttention(nn.Module):
|
41 |
+
"""Implement the scaled dot product attention with softmax.
|
42 |
+
Arguments
|
43 |
+
---------
|
44 |
+
softmax_scale: The temperature to use for the softmax attention.
|
45 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
46 |
+
runtime)
|
47 |
+
attention_dropout: The dropout rate to apply to the attention
|
48 |
+
(default: 0.0)
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
52 |
+
super().__init__()
|
53 |
+
self.softmax_scale = softmax_scale
|
54 |
+
self.dropout_p = attention_dropout
|
55 |
+
|
56 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
57 |
+
max_s=None, need_weights=False):
|
58 |
+
"""Implements the multihead softmax attention.
|
59 |
+
Arguments
|
60 |
+
---------
|
61 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
62 |
+
if unpadded: (nnz, 3, h, d)
|
63 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
64 |
+
"""
|
65 |
+
assert not need_weights
|
66 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
67 |
+
assert qkv.is_cuda
|
68 |
+
|
69 |
+
if cu_seqlens is None:
|
70 |
+
batch_size = qkv.shape[0]
|
71 |
+
seqlen = qkv.shape[1]
|
72 |
+
if key_padding_mask is None:
|
73 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
74 |
+
max_s = seqlen
|
75 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
76 |
+
device=qkv.device)
|
77 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
78 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
79 |
+
softmax_scale=self.softmax_scale, causal=causal
|
80 |
+
)
|
81 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
82 |
+
else:
|
83 |
+
nheads = qkv.shape[-2]
|
84 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
85 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
86 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
88 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
89 |
+
softmax_scale=self.softmax_scale, causal=causal
|
90 |
+
)
|
91 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
92 |
+
indices, batch_size, seqlen),
|
93 |
+
'b s (h d) -> b s h d', h=nheads)
|
94 |
+
else:
|
95 |
+
assert max_s is not None
|
96 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
97 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
98 |
+
softmax_scale=self.softmax_scale, causal=causal
|
99 |
+
)
|
100 |
+
|
101 |
+
return output, None
|
102 |
+
|
103 |
+
|
104 |
+
class InternRMSNorm(nn.Module):
|
105 |
+
def __init__(self, hidden_size, eps=1e-6):
|
106 |
+
super().__init__()
|
107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
+
self.variance_epsilon = eps
|
109 |
+
|
110 |
+
def forward(self, hidden_states):
|
111 |
+
input_dtype = hidden_states.dtype
|
112 |
+
hidden_states = hidden_states.to(torch.float32)
|
113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
115 |
+
return self.weight * hidden_states.to(input_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
try:
|
119 |
+
from apex.normalization import FusedRMSNorm
|
120 |
+
|
121 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
122 |
+
|
123 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
124 |
+
except ImportError:
|
125 |
+
# using the normal InternRMSNorm
|
126 |
+
pass
|
127 |
+
except Exception:
|
128 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
129 |
+
pass
|
130 |
+
|
131 |
+
|
132 |
+
NORM2FN = {
|
133 |
+
'rms_norm': InternRMSNorm,
|
134 |
+
'layer_norm': nn.LayerNorm,
|
135 |
+
}
|
136 |
+
|
137 |
+
|
138 |
+
class InternVisionEmbeddings(nn.Module):
|
139 |
+
def __init__(self, config: InternVisionConfig):
|
140 |
+
super().__init__()
|
141 |
+
self.config = config
|
142 |
+
self.embed_dim = config.hidden_size
|
143 |
+
self.image_size = config.image_size
|
144 |
+
self.patch_size = config.patch_size
|
145 |
+
|
146 |
+
self.class_embedding = nn.Parameter(
|
147 |
+
torch.randn(1, 1, self.embed_dim),
|
148 |
+
)
|
149 |
+
|
150 |
+
self.patch_embedding = nn.Conv2d(
|
151 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
152 |
+
)
|
153 |
+
|
154 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
155 |
+
self.num_positions = self.num_patches + 1
|
156 |
+
|
157 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
158 |
+
|
159 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
160 |
+
target_dtype = pos_embed.dtype
|
161 |
+
pos_embed = pos_embed.float().reshape(
|
162 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
163 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
164 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
165 |
+
return pos_embed
|
166 |
+
|
167 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
168 |
+
target_dtype = self.patch_embedding.weight.dtype
|
169 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
170 |
+
batch_size, _, height, width = patch_embeds.shape
|
171 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
172 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
173 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
174 |
+
position_embedding = torch.cat([
|
175 |
+
self.position_embedding[:, :1, :],
|
176 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
177 |
+
], dim=1)
|
178 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
179 |
+
return embeddings
|
180 |
+
|
181 |
+
|
182 |
+
class InternAttention(nn.Module):
|
183 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
184 |
+
|
185 |
+
def __init__(self, config: InternVisionConfig):
|
186 |
+
super().__init__()
|
187 |
+
self.config = config
|
188 |
+
self.embed_dim = config.hidden_size
|
189 |
+
self.num_heads = config.num_attention_heads
|
190 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
191 |
+
if config.use_flash_attn and not has_flash_attn:
|
192 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
193 |
+
self.head_dim = self.embed_dim // self.num_heads
|
194 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
195 |
+
raise ValueError(
|
196 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
197 |
+
f' {self.num_heads}).'
|
198 |
+
)
|
199 |
+
|
200 |
+
self.scale = self.head_dim ** -0.5
|
201 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
202 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
203 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
204 |
+
|
205 |
+
self.qk_normalization = config.qk_normalization
|
206 |
+
|
207 |
+
if self.qk_normalization:
|
208 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
209 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
210 |
+
|
211 |
+
if self.use_flash_attn:
|
212 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
213 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
214 |
+
|
215 |
+
def _naive_attn(self, x):
|
216 |
+
B, N, C = x.shape
|
217 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
218 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
219 |
+
|
220 |
+
if self.qk_normalization:
|
221 |
+
B_, H_, N_, D_ = q.shape
|
222 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
223 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
224 |
+
|
225 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
226 |
+
attn = attn.softmax(dim=-1)
|
227 |
+
attn = self.attn_drop(attn)
|
228 |
+
|
229 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
230 |
+
x = self.proj(x)
|
231 |
+
x = self.proj_drop(x)
|
232 |
+
return x
|
233 |
+
|
234 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
235 |
+
qkv = self.qkv(x)
|
236 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
237 |
+
|
238 |
+
if self.qk_normalization:
|
239 |
+
q, k, v = qkv.unbind(2)
|
240 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
241 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
242 |
+
qkv = torch.stack([q, k, v], dim=2)
|
243 |
+
|
244 |
+
context, _ = self.inner_attn(
|
245 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
246 |
+
)
|
247 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
248 |
+
outs = self.proj_drop(outs)
|
249 |
+
return outs
|
250 |
+
|
251 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
252 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
class InternMLP(nn.Module):
|
257 |
+
def __init__(self, config: InternVisionConfig):
|
258 |
+
super().__init__()
|
259 |
+
self.config = config
|
260 |
+
self.act = ACT2FN[config.hidden_act]
|
261 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
262 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
263 |
+
|
264 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
265 |
+
hidden_states = self.fc1(hidden_states)
|
266 |
+
hidden_states = self.act(hidden_states)
|
267 |
+
hidden_states = self.fc2(hidden_states)
|
268 |
+
return hidden_states
|
269 |
+
|
270 |
+
|
271 |
+
class InternVisionEncoderLayer(nn.Module):
|
272 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
273 |
+
super().__init__()
|
274 |
+
self.embed_dim = config.hidden_size
|
275 |
+
self.intermediate_size = config.intermediate_size
|
276 |
+
self.norm_type = config.norm_type
|
277 |
+
|
278 |
+
self.attn = InternAttention(config)
|
279 |
+
self.mlp = InternMLP(config)
|
280 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
281 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
282 |
+
|
283 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
284 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
285 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
286 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
287 |
+
|
288 |
+
def forward(
|
289 |
+
self,
|
290 |
+
hidden_states: torch.Tensor,
|
291 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
292 |
+
"""
|
293 |
+
Args:
|
294 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
295 |
+
"""
|
296 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
297 |
+
|
298 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
299 |
+
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class InternVisionEncoder(nn.Module):
|
304 |
+
"""
|
305 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
306 |
+
[`InternEncoderLayer`].
|
307 |
+
|
308 |
+
Args:
|
309 |
+
config (`InternConfig`):
|
310 |
+
The corresponding vision configuration for the `InternEncoder`.
|
311 |
+
"""
|
312 |
+
|
313 |
+
def __init__(self, config: InternVisionConfig):
|
314 |
+
super().__init__()
|
315 |
+
self.config = config
|
316 |
+
# stochastic depth decay rule
|
317 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
318 |
+
self.layers = nn.ModuleList([
|
319 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
320 |
+
self.gradient_checkpointing = True
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
inputs_embeds,
|
325 |
+
output_hidden_states: Optional[bool] = None,
|
326 |
+
return_dict: Optional[bool] = None,
|
327 |
+
) -> Union[Tuple, BaseModelOutput]:
|
328 |
+
r"""
|
329 |
+
Args:
|
330 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
331 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
332 |
+
output_hidden_states (`bool`, *optional*):
|
333 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
334 |
+
for more detail.
|
335 |
+
return_dict (`bool`, *optional*):
|
336 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
337 |
+
"""
|
338 |
+
output_hidden_states = (
|
339 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
340 |
+
)
|
341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
342 |
+
|
343 |
+
encoder_states = () if output_hidden_states else None
|
344 |
+
hidden_states = inputs_embeds
|
345 |
+
|
346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
347 |
+
if output_hidden_states:
|
348 |
+
encoder_states = encoder_states + (hidden_states,)
|
349 |
+
if self.gradient_checkpointing and self.training:
|
350 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
351 |
+
encoder_layer,
|
352 |
+
hidden_states)
|
353 |
+
else:
|
354 |
+
layer_outputs = encoder_layer(
|
355 |
+
hidden_states,
|
356 |
+
)
|
357 |
+
hidden_states = layer_outputs
|
358 |
+
|
359 |
+
if output_hidden_states:
|
360 |
+
encoder_states = encoder_states + (hidden_states,)
|
361 |
+
|
362 |
+
if not return_dict:
|
363 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
364 |
+
return BaseModelOutput(
|
365 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
366 |
+
)
|
367 |
+
|
368 |
+
|
369 |
+
class InternVisionModel(PreTrainedModel):
|
370 |
+
main_input_name = 'pixel_values'
|
371 |
+
_supports_flash_attn_2 = True
|
372 |
+
config_class = InternVisionConfig
|
373 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
374 |
+
|
375 |
+
def __init__(self, config: InternVisionConfig):
|
376 |
+
super().__init__(config)
|
377 |
+
self.config = config
|
378 |
+
|
379 |
+
self.embeddings = InternVisionEmbeddings(config)
|
380 |
+
self.encoder = InternVisionEncoder(config)
|
381 |
+
|
382 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
383 |
+
pos_emb = self.embeddings.position_embedding
|
384 |
+
_, num_positions, embed_dim = pos_emb.shape
|
385 |
+
cls_emb = pos_emb[:, :1, :]
|
386 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
387 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
388 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
389 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
390 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
391 |
+
self.embeddings.image_size = new_size
|
392 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
393 |
+
|
394 |
+
def get_input_embeddings(self):
|
395 |
+
return self.embeddings
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
400 |
+
output_hidden_states: Optional[bool] = None,
|
401 |
+
return_dict: Optional[bool] = None,
|
402 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
403 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
404 |
+
output_hidden_states = (
|
405 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
406 |
+
)
|
407 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
408 |
+
|
409 |
+
if pixel_values is None and pixel_embeds is None:
|
410 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
411 |
+
|
412 |
+
if pixel_embeds is not None:
|
413 |
+
hidden_states = pixel_embeds
|
414 |
+
else:
|
415 |
+
if len(pixel_values.shape) == 4:
|
416 |
+
hidden_states = self.embeddings(pixel_values)
|
417 |
+
else:
|
418 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
419 |
+
encoder_outputs = self.encoder(
|
420 |
+
inputs_embeds=hidden_states,
|
421 |
+
output_hidden_states=output_hidden_states,
|
422 |
+
return_dict=return_dict,
|
423 |
+
)
|
424 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
425 |
+
pooled_output = last_hidden_state[:, 0, :]
|
426 |
+
|
427 |
+
if not return_dict:
|
428 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
429 |
+
|
430 |
+
return BaseModelOutputWithPooling(
|
431 |
+
last_hidden_state=last_hidden_state,
|
432 |
+
pooler_output=pooled_output,
|
433 |
+
hidden_states=encoder_outputs.hidden_states,
|
434 |
+
attentions=encoder_outputs.attentions,
|
435 |
+
)
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from einops import rearrange
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
30 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
31 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
QuestionAnsweringModelOutput,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
+
TokenClassifierOutput)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
38 |
+
from transformers.utils import (add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
is_flash_attn_greater_or_equal_2_10, logging,
|
42 |
+
replace_return_docstrings)
|
43 |
+
|
44 |
+
from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules
|
45 |
+
|
46 |
+
try:
|
47 |
+
from transformers.generation.streamers import BaseStreamer
|
48 |
+
except Exception:
|
49 |
+
BaseStreamer = None
|
50 |
+
|
51 |
+
from .configuration_internlm2 import InternLM2Config
|
52 |
+
|
53 |
+
if is_flash_attn_2_available():
|
54 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
55 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input,
|
56 |
+
unpad_input)
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__)
|
59 |
+
|
60 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
61 |
+
|
62 |
+
|
63 |
+
def _get_unpad_data(attention_mask):
|
64 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
65 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
66 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
67 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0,
|
68 |
+
dtype=torch.int32), (1, 0)) # pylint: disable=E1102
|
69 |
+
return (
|
70 |
+
indices,
|
71 |
+
cu_seqlens,
|
72 |
+
max_seqlen_in_batch,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
class InternLM2RMSNorm(nn.Module):
|
77 |
+
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
|
78 |
+
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
super().__init__()
|
81 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
82 |
+
self.variance_epsilon = eps
|
83 |
+
|
84 |
+
def forward(self, hidden_states):
|
85 |
+
input_dtype = hidden_states.dtype
|
86 |
+
hidden_states = hidden_states.to(torch.float32)
|
87 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
88 |
+
hidden_states = hidden_states * torch.rsqrt(variance +
|
89 |
+
self.variance_epsilon)
|
90 |
+
return self.weight * hidden_states.to(input_dtype)
|
91 |
+
|
92 |
+
|
93 |
+
ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
|
94 |
+
|
95 |
+
|
96 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
97 |
+
"""Rotary Position Embedding for the InternLM2 model.
|
98 |
+
|
99 |
+
Credits to the Reddit user /u/lucidrains.
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self,
|
103 |
+
dim,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
base=10000,
|
106 |
+
device=None,
|
107 |
+
scaling_factor=1.0):
|
108 |
+
super().__init__()
|
109 |
+
self.scaling_factor = scaling_factor
|
110 |
+
self.dim = dim
|
111 |
+
self.max_position_embeddings = max_position_embeddings
|
112 |
+
self.base = base
|
113 |
+
inv_freq = 1.0 / (self.base**(torch.arange(
|
114 |
+
0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
115 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
116 |
+
# For BC we register cos and sin cached
|
117 |
+
self.max_seq_len_cached = max_position_embeddings
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def forward(self, x, position_ids):
|
121 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
122 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
|
123 |
+
position_ids.shape[0], -1, 1)
|
124 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
125 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
126 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
127 |
+
device_type = x.device.type
|
128 |
+
device_type = device_type if isinstance(
|
129 |
+
device_type, str) and device_type != 'mps' else 'cpu'
|
130 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
131 |
+
freqs = (inv_freq_expanded.float()
|
132 |
+
@ position_ids_expanded.float()).transpose(1, 2)
|
133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
134 |
+
cos = emb.cos()
|
135 |
+
sin = emb.sin()
|
136 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
137 |
+
|
138 |
+
|
139 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
140 |
+
"""InternLM2RotaryEmbedding extended with linear scaling.
|
141 |
+
|
142 |
+
Credits to the Reddit user /u/kaiokendev
|
143 |
+
"""
|
144 |
+
|
145 |
+
def forward(self, x, position_ids):
|
146 |
+
# difference to the original RoPE: a scaling factor is applied to the position ids
|
147 |
+
position_ids = position_ids.float() / self.scaling_factor
|
148 |
+
cos, sin = super().forward(x, position_ids)
|
149 |
+
return cos, sin
|
150 |
+
|
151 |
+
|
152 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
153 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
154 |
+
|
155 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
156 |
+
"""
|
157 |
+
|
158 |
+
def forward(self, x, position_ids):
|
159 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
160 |
+
seq_len = torch.max(position_ids) + 1
|
161 |
+
if seq_len > self.max_position_embeddings:
|
162 |
+
base = self.base * ((self.scaling_factor * seq_len /
|
163 |
+
self.max_position_embeddings) -
|
164 |
+
(self.scaling_factor - 1))**(self.dim /
|
165 |
+
(self.dim - 2))
|
166 |
+
inv_freq = 1.0 / (base**(torch.arange(
|
167 |
+
0, self.dim, 2, dtype=torch.int64).float().to(x.device) /
|
168 |
+
self.dim))
|
169 |
+
self.register_buffer(
|
170 |
+
'inv_freq', inv_freq,
|
171 |
+
persistent=False) # TODO joao: this may break with compilation
|
172 |
+
|
173 |
+
cos, sin = super().forward(x, position_ids)
|
174 |
+
return cos, sin
|
175 |
+
|
176 |
+
|
177 |
+
def rotate_half(x):
|
178 |
+
"""Rotates half the hidden dims of the input."""
|
179 |
+
x1 = x[..., :x.shape[-1] // 2]
|
180 |
+
x2 = x[..., x.shape[-1] // 2:]
|
181 |
+
return torch.cat((-x2, x1), dim=-1)
|
182 |
+
|
183 |
+
|
184 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
|
185 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
q (`torch.Tensor`): The query tensor.
|
189 |
+
k (`torch.Tensor`): The key tensor.
|
190 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
191 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
192 |
+
position_ids (`torch.Tensor`, *optional*):
|
193 |
+
Deprecated and unused.
|
194 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
195 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
196 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
197 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
198 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
199 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
200 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
201 |
+
Returns:
|
202 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
203 |
+
"""
|
204 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
205 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
206 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
207 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
208 |
+
return q_embed, k_embed
|
209 |
+
|
210 |
+
|
211 |
+
class InternLM2MLP(nn.Module):
|
212 |
+
"""MLP for InternLM2 model."""
|
213 |
+
|
214 |
+
def __init__(self, config):
|
215 |
+
super().__init__()
|
216 |
+
self.config = config
|
217 |
+
self.hidden_size = config.hidden_size
|
218 |
+
self.intermediate_size = config.intermediate_size
|
219 |
+
self.w1 = nn.Linear(self.hidden_size,
|
220 |
+
self.intermediate_size,
|
221 |
+
bias=False)
|
222 |
+
self.w3 = nn.Linear(self.hidden_size,
|
223 |
+
self.intermediate_size,
|
224 |
+
bias=False)
|
225 |
+
self.w2 = nn.Linear(self.intermediate_size,
|
226 |
+
self.hidden_size,
|
227 |
+
bias=False)
|
228 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
232 |
+
|
233 |
+
return down_proj
|
234 |
+
|
235 |
+
|
236 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
237 |
+
"""This is the equivalent of torch.repeat_interleave(x, dim=1,
|
238 |
+
repeats=n_rep).
|
239 |
+
|
240 |
+
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
|
241 |
+
(batch, num_attention_heads, seqlen, head_dim)
|
242 |
+
"""
|
243 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
244 |
+
if n_rep == 1:
|
245 |
+
return hidden_states
|
246 |
+
hidden_states = hidden_states[:, :,
|
247 |
+
None, :, :].expand(batch,
|
248 |
+
num_key_value_heads,
|
249 |
+
n_rep, slen, head_dim)
|
250 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
|
251 |
+
head_dim)
|
252 |
+
|
253 |
+
|
254 |
+
class InternLM2Attention(nn.Module):
|
255 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper."""
|
256 |
+
|
257 |
+
def __init__(self,
|
258 |
+
config: InternLM2Config,
|
259 |
+
layer_idx: Optional[int] = None):
|
260 |
+
super().__init__()
|
261 |
+
self.config = config
|
262 |
+
self.layer_idx = layer_idx
|
263 |
+
if layer_idx is None:
|
264 |
+
logger.warning_once(
|
265 |
+
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
|
266 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
|
267 |
+
'when creating this class.')
|
268 |
+
|
269 |
+
self.hidden_size = config.hidden_size
|
270 |
+
self.num_heads = config.num_attention_heads
|
271 |
+
self.head_dim = self.hidden_size // self.num_heads
|
272 |
+
self.num_key_value_heads = config.num_key_value_heads
|
273 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
274 |
+
self.max_position_embeddings = config.max_position_embeddings
|
275 |
+
self.rope_theta = config.rope_theta
|
276 |
+
self.is_causal = True
|
277 |
+
|
278 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
279 |
+
raise ValueError(
|
280 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
281 |
+
f' and `num_heads`: {self.num_heads}).')
|
282 |
+
|
283 |
+
self.wqkv = nn.Linear(
|
284 |
+
self.hidden_size,
|
285 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
286 |
+
bias=config.bias,
|
287 |
+
)
|
288 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim,
|
289 |
+
self.hidden_size,
|
290 |
+
bias=config.bias)
|
291 |
+
|
292 |
+
self._init_rope()
|
293 |
+
|
294 |
+
def _init_rope(self):
|
295 |
+
if self.config.rope_scaling is None:
|
296 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
297 |
+
self.head_dim,
|
298 |
+
max_position_embeddings=self.max_position_embeddings,
|
299 |
+
base=self.rope_theta,
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
scaling_type = self.config.rope_scaling['type']
|
303 |
+
scaling_factor = self.config.rope_scaling['factor']
|
304 |
+
if scaling_type == 'linear':
|
305 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
306 |
+
self.head_dim,
|
307 |
+
max_position_embeddings=self.max_position_embeddings,
|
308 |
+
scaling_factor=scaling_factor,
|
309 |
+
base=self.rope_theta,
|
310 |
+
)
|
311 |
+
elif scaling_type == 'dynamic':
|
312 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
313 |
+
self.head_dim,
|
314 |
+
max_position_embeddings=self.max_position_embeddings,
|
315 |
+
scaling_factor=scaling_factor,
|
316 |
+
base=self.rope_theta,
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
320 |
+
|
321 |
+
def forward(
|
322 |
+
self,
|
323 |
+
hidden_states: torch.Tensor,
|
324 |
+
attention_mask: Optional[torch.Tensor] = None,
|
325 |
+
position_ids: Optional[torch.LongTensor] = None,
|
326 |
+
past_key_value: Optional[Cache] = None,
|
327 |
+
output_attentions: bool = False,
|
328 |
+
use_cache: bool = False, # pylint: disable=unused-argument
|
329 |
+
cache_position: Optional[torch.LongTensor] = None,
|
330 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
331 |
+
Optional[Tuple[torch.Tensor]]]:
|
332 |
+
bsz, q_len, _ = hidden_states.size()
|
333 |
+
|
334 |
+
if self.config.pretraining_tp > 1:
|
335 |
+
# split qkv_states by tp size
|
336 |
+
key_value_slicing = (self.num_key_value_heads *
|
337 |
+
self.head_dim) // self.config.pretraining_tp
|
338 |
+
qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
|
339 |
+
qkv_states = torch.cat(
|
340 |
+
[
|
341 |
+
F.linear(hidden_states, qkv_slice)
|
342 |
+
for qkv_slice in qkv_slices
|
343 |
+
],
|
344 |
+
dim=-1 # pylint: disable=E1102
|
345 |
+
)
|
346 |
+
else:
|
347 |
+
qkv_states = self.wqkv(hidden_states)
|
348 |
+
|
349 |
+
qkv_states = rearrange(
|
350 |
+
qkv_states,
|
351 |
+
'b q (h gs d) -> b q h gs d',
|
352 |
+
gs=2 + self.num_key_value_groups,
|
353 |
+
d=self.head_dim,
|
354 |
+
)
|
355 |
+
|
356 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
357 |
+
query_states = rearrange(query_states,
|
358 |
+
'b q h gs d -> b q (h gs) d').transpose(1, 2)
|
359 |
+
key_states = qkv_states[..., -2, :].transpose(1, 2)
|
360 |
+
value_states = qkv_states[..., -1, :].transpose(1, 2)
|
361 |
+
|
362 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
363 |
+
query_states, key_states = apply_rotary_pos_emb(
|
364 |
+
query_states, key_states, cos, sin, position_ids)
|
365 |
+
|
366 |
+
if past_key_value is not None:
|
367 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
368 |
+
cache_kwargs = {
|
369 |
+
'sin': sin,
|
370 |
+
'cos': cos,
|
371 |
+
'cache_position': cache_position
|
372 |
+
}
|
373 |
+
key_states, value_states = past_key_value.update(
|
374 |
+
key_states, value_states, self.layer_idx, cache_kwargs)
|
375 |
+
|
376 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
377 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
378 |
+
|
379 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(
|
380 |
+
2, 3)) / math.sqrt(self.head_dim)
|
381 |
+
|
382 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
383 |
+
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
|
384 |
+
attn_weights = attn_weights + causal_mask
|
385 |
+
|
386 |
+
# upcast attention to fp32
|
387 |
+
attn_weights = nn.functional.softmax(attn_weights,
|
388 |
+
dim=-1,
|
389 |
+
dtype=torch.float32).to(
|
390 |
+
query_states.dtype)
|
391 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
392 |
+
|
393 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
394 |
+
raise ValueError(
|
395 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
396 |
+
f' {attn_output.size()}')
|
397 |
+
|
398 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
399 |
+
|
400 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
401 |
+
|
402 |
+
if self.config.pretraining_tp > 1:
|
403 |
+
attn_output = attn_output.split(self.hidden_size //
|
404 |
+
self.config.pretraining_tp,
|
405 |
+
dim=2)
|
406 |
+
o_proj_slices = self.wo.weight.split(self.hidden_size //
|
407 |
+
self.config.pretraining_tp,
|
408 |
+
dim=1)
|
409 |
+
attn_output = sum([
|
410 |
+
F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
|
411 |
+
for i in range(self.config.pretraining_tp)
|
412 |
+
])
|
413 |
+
else:
|
414 |
+
attn_output = self.wo(attn_output)
|
415 |
+
|
416 |
+
if not output_attentions:
|
417 |
+
attn_weights = None
|
418 |
+
|
419 |
+
return attn_output, attn_weights, past_key_value
|
420 |
+
|
421 |
+
|
422 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
423 |
+
"""InternLM2 flash attention module.
|
424 |
+
|
425 |
+
This module inherits from `InternLM2Attention` as the weights of the module
|
426 |
+
stays untouched. The only required change would be on the forward pass
|
427 |
+
where it needs to correctly call the public API of flash attention and deal
|
428 |
+
with padding tokens in case the input contains any of them.
|
429 |
+
"""
|
430 |
+
|
431 |
+
def __init__(self, *args, **kwargs):
|
432 |
+
super().__init__(*args, **kwargs)
|
433 |
+
|
434 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
435 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment,
|
436 |
+
# that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
437 |
+
# Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
438 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
|
439 |
+
# produces a wrong mask (top-left).
|
440 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10(
|
441 |
+
)
|
442 |
+
|
443 |
+
def forward(
|
444 |
+
self,
|
445 |
+
hidden_states: torch.Tensor,
|
446 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
447 |
+
position_ids: Optional[torch.LongTensor] = None,
|
448 |
+
past_key_value: Optional[Cache] = None,
|
449 |
+
output_attentions: bool = False,
|
450 |
+
use_cache: bool = False,
|
451 |
+
cache_position: Optional[torch.LongTensor] = None,
|
452 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
453 |
+
Optional[Tuple[torch.Tensor]]]:
|
454 |
+
if isinstance(past_key_value, StaticCache):
|
455 |
+
raise ValueError(
|
456 |
+
'`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` '
|
457 |
+
'make sure to use `sdpa` in the mean time, and open an issue at '
|
458 |
+
'https://github.com/huggingface/transformers')
|
459 |
+
|
460 |
+
output_attentions = False
|
461 |
+
|
462 |
+
bsz, q_len, _ = hidden_states.size()
|
463 |
+
|
464 |
+
qkv_states = self.wqkv(hidden_states)
|
465 |
+
|
466 |
+
qkv_states = rearrange(
|
467 |
+
qkv_states,
|
468 |
+
'b q (h gs d) -> b q h gs d',
|
469 |
+
gs=2 + self.num_key_value_groups,
|
470 |
+
d=self.head_dim,
|
471 |
+
)
|
472 |
+
|
473 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
474 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
475 |
+
key_states = qkv_states[..., -2, :]
|
476 |
+
value_states = qkv_states[..., -1, :]
|
477 |
+
|
478 |
+
query_states = query_states.transpose(1, 2)
|
479 |
+
key_states = key_states.transpose(1, 2)
|
480 |
+
value_states = value_states.transpose(1, 2)
|
481 |
+
|
482 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
483 |
+
query_states, key_states = apply_rotary_pos_emb(
|
484 |
+
query_states, key_states, cos, sin)
|
485 |
+
|
486 |
+
if past_key_value is not None:
|
487 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
488 |
+
cache_kwargs = {
|
489 |
+
'sin': sin,
|
490 |
+
'cos': cos,
|
491 |
+
'cache_position': cache_position
|
492 |
+
}
|
493 |
+
key_states, value_states = past_key_value.update(
|
494 |
+
key_states, value_states, self.layer_idx, cache_kwargs)
|
495 |
+
|
496 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
497 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
498 |
+
# to be able to avoid many of these transpose/reshape/view.
|
499 |
+
query_states = query_states.transpose(1, 2)
|
500 |
+
key_states = key_states.transpose(1, 2)
|
501 |
+
value_states = value_states.transpose(1, 2)
|
502 |
+
|
503 |
+
# dropout_rate = self.attention_dropout if self.training else 0.0
|
504 |
+
dropout_rate = 0.0
|
505 |
+
|
506 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
507 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
508 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
509 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
510 |
+
# in fp32. (InternLM2RMSNorm handles it correctly)
|
511 |
+
|
512 |
+
input_dtype = query_states.dtype
|
513 |
+
if input_dtype == torch.float32:
|
514 |
+
if torch.is_autocast_enabled():
|
515 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
516 |
+
# Handle the case where the model is quantized
|
517 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
518 |
+
target_dtype = self.config._pre_quantization_dtype
|
519 |
+
else:
|
520 |
+
target_dtype = self.wqkv.weight.dtype
|
521 |
+
|
522 |
+
logger.warning_once(
|
523 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
524 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
525 |
+
f' {target_dtype}.')
|
526 |
+
|
527 |
+
query_states = query_states.to(target_dtype)
|
528 |
+
key_states = key_states.to(target_dtype)
|
529 |
+
value_states = value_states.to(target_dtype)
|
530 |
+
|
531 |
+
attn_output = self._flash_attention_forward(query_states,
|
532 |
+
key_states,
|
533 |
+
value_states,
|
534 |
+
attention_mask,
|
535 |
+
q_len,
|
536 |
+
dropout=dropout_rate)
|
537 |
+
|
538 |
+
attn_output = attn_output.reshape(bsz, q_len,
|
539 |
+
self.hidden_size).contiguous()
|
540 |
+
attn_output = self.wo(attn_output)
|
541 |
+
|
542 |
+
if not output_attentions:
|
543 |
+
attn_weights = None
|
544 |
+
|
545 |
+
return attn_output, attn_weights, past_key_value # pylint: disable=E0606
|
546 |
+
|
547 |
+
def _flash_attention_forward(self,
|
548 |
+
query_states,
|
549 |
+
key_states,
|
550 |
+
value_states,
|
551 |
+
attention_mask,
|
552 |
+
query_length,
|
553 |
+
dropout=0.0,
|
554 |
+
softmax_scale=None):
|
555 |
+
"""
|
556 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
557 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
query_states (`torch.Tensor`):
|
561 |
+
Input query states to be passed to Flash Attention API
|
562 |
+
key_states (`torch.Tensor`):
|
563 |
+
Input key states to be passed to Flash Attention API
|
564 |
+
value_states (`torch.Tensor`):
|
565 |
+
Input value states to be passed to Flash Attention API
|
566 |
+
attention_mask (`torch.Tensor`):
|
567 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
568 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
569 |
+
dropout (`float`):
|
570 |
+
Attention dropout
|
571 |
+
softmax_scale (`float`, *optional*):
|
572 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
573 |
+
"""
|
574 |
+
if not self._flash_attn_uses_top_left_mask:
|
575 |
+
causal = self.is_causal
|
576 |
+
else:
|
577 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
|
578 |
+
# For details, please see the comment in InternLM2FlashAttention2 __init__.
|
579 |
+
causal = self.is_causal and query_length != 1
|
580 |
+
|
581 |
+
# Contains at least one padding token in the sequence
|
582 |
+
if attention_mask is not None:
|
583 |
+
batch_size = query_states.shape[0]
|
584 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
585 |
+
query_states, key_states, value_states, attention_mask,
|
586 |
+
query_length)
|
587 |
+
|
588 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
589 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
590 |
+
|
591 |
+
attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
|
592 |
+
query_states,
|
593 |
+
key_states,
|
594 |
+
value_states,
|
595 |
+
cu_seqlens_q=cu_seqlens_q,
|
596 |
+
cu_seqlens_k=cu_seqlens_k,
|
597 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
598 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
599 |
+
dropout_p=dropout,
|
600 |
+
softmax_scale=softmax_scale,
|
601 |
+
causal=causal,
|
602 |
+
)
|
603 |
+
|
604 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size,
|
605 |
+
query_length) # pylint: disable=E0606
|
606 |
+
else:
|
607 |
+
attn_output = flash_attn_func( # pylint: disable=E0606
|
608 |
+
query_states,
|
609 |
+
key_states,
|
610 |
+
value_states,
|
611 |
+
dropout,
|
612 |
+
softmax_scale=softmax_scale,
|
613 |
+
causal=causal)
|
614 |
+
|
615 |
+
return attn_output
|
616 |
+
|
617 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask,
|
618 |
+
query_length):
|
619 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
|
620 |
+
attention_mask)
|
621 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
622 |
+
|
623 |
+
key_layer = index_first_axis( # pylint: disable=E0606
|
624 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
|
625 |
+
head_dim), indices_k)
|
626 |
+
value_layer = index_first_axis( # pylint: disable=E0606
|
627 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
|
628 |
+
head_dim), indices_k)
|
629 |
+
if query_length == kv_seq_len:
|
630 |
+
query_layer = index_first_axis( # pylint: disable=E0606
|
631 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
|
632 |
+
head_dim), indices_k)
|
633 |
+
cu_seqlens_q = cu_seqlens_k
|
634 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
635 |
+
indices_q = indices_k
|
636 |
+
elif query_length == 1:
|
637 |
+
max_seqlen_in_batch_q = 1
|
638 |
+
cu_seqlens_q = torch.arange(
|
639 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
640 |
+
) # There is a memcpy here, that is very bad.
|
641 |
+
indices_q = cu_seqlens_q[:-1]
|
642 |
+
query_layer = query_layer.squeeze(1)
|
643 |
+
else:
|
644 |
+
# The -q_len: slice assumes left padding.
|
645 |
+
attention_mask = attention_mask[:, -query_length:]
|
646 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
|
647 |
+
query_layer, attention_mask)
|
648 |
+
|
649 |
+
return (
|
650 |
+
query_layer,
|
651 |
+
key_layer,
|
652 |
+
value_layer,
|
653 |
+
indices_q,
|
654 |
+
(cu_seqlens_q, cu_seqlens_k),
|
655 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
656 |
+
)
|
657 |
+
|
658 |
+
|
659 |
+
# Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
|
660 |
+
class InternLM2SdpaAttention(InternLM2Attention):
|
661 |
+
"""InternLM2 attention module using
|
662 |
+
torch.nn.functional.scaled_dot_product_attention.
|
663 |
+
|
664 |
+
This module inherits from `InternLM2Attention` as the weights of the module
|
665 |
+
stays untouched. The only changes are on the forward pass to adapt to SDPA
|
666 |
+
API.
|
667 |
+
"""
|
668 |
+
|
669 |
+
# Adapted from InternLM2Attention.forward
|
670 |
+
def forward(
|
671 |
+
self,
|
672 |
+
hidden_states: torch.Tensor,
|
673 |
+
attention_mask: Optional[torch.Tensor] = None,
|
674 |
+
position_ids: Optional[torch.LongTensor] = None,
|
675 |
+
past_key_value: Optional[Cache] = None,
|
676 |
+
output_attentions: bool = False,
|
677 |
+
use_cache: bool = False,
|
678 |
+
cache_position: Optional[torch.LongTensor] = None,
|
679 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
680 |
+
Optional[Tuple[torch.Tensor]]]:
|
681 |
+
if output_attentions:
|
682 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
|
683 |
+
# once this is implemented.
|
684 |
+
logger.warning_once(
|
685 |
+
'InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` '
|
686 |
+
'does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
687 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. '
|
688 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
689 |
+
)
|
690 |
+
return super().forward(
|
691 |
+
hidden_states=hidden_states,
|
692 |
+
attention_mask=attention_mask,
|
693 |
+
position_ids=position_ids,
|
694 |
+
past_key_value=past_key_value,
|
695 |
+
output_attentions=output_attentions,
|
696 |
+
use_cache=use_cache,
|
697 |
+
cache_position=cache_position,
|
698 |
+
)
|
699 |
+
|
700 |
+
bsz, q_len, _ = hidden_states.size()
|
701 |
+
|
702 |
+
qkv_states = self.wqkv(hidden_states)
|
703 |
+
|
704 |
+
qkv_states = rearrange(
|
705 |
+
qkv_states,
|
706 |
+
'b q (h gs d) -> b q h gs d',
|
707 |
+
gs=2 + self.num_key_value_groups,
|
708 |
+
d=self.head_dim,
|
709 |
+
)
|
710 |
+
|
711 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
712 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
713 |
+
key_states = qkv_states[..., -2, :]
|
714 |
+
value_states = qkv_states[..., -1, :]
|
715 |
+
|
716 |
+
query_states = query_states.transpose(1, 2)
|
717 |
+
key_states = key_states.transpose(1, 2)
|
718 |
+
value_states = value_states.transpose(1, 2)
|
719 |
+
|
720 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
721 |
+
query_states, key_states = apply_rotary_pos_emb(
|
722 |
+
query_states, key_states, cos, sin)
|
723 |
+
|
724 |
+
if past_key_value is not None:
|
725 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
726 |
+
cache_kwargs = {
|
727 |
+
'sin': sin,
|
728 |
+
'cos': cos,
|
729 |
+
'cache_position': cache_position
|
730 |
+
}
|
731 |
+
key_states, value_states = past_key_value.update(
|
732 |
+
key_states, value_states, self.layer_idx, cache_kwargs)
|
733 |
+
|
734 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
735 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
736 |
+
|
737 |
+
causal_mask = attention_mask
|
738 |
+
if attention_mask is not None:
|
739 |
+
causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]
|
740 |
+
|
741 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
|
742 |
+
# custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
|
743 |
+
if query_states.device.type == 'cuda' and causal_mask is not None:
|
744 |
+
query_states = query_states.contiguous()
|
745 |
+
key_states = key_states.contiguous()
|
746 |
+
value_states = value_states.contiguous()
|
747 |
+
|
748 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
|
749 |
+
# an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
|
750 |
+
# options. An inline conditional prevents dynamic shapes from compiling.
|
751 |
+
is_causal = bool(causal_mask is None and q_len > 1)
|
752 |
+
|
753 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
|
754 |
+
query_states,
|
755 |
+
key_states,
|
756 |
+
value_states,
|
757 |
+
attn_mask=causal_mask,
|
758 |
+
dropout_p=0.0,
|
759 |
+
is_causal=is_causal,
|
760 |
+
)
|
761 |
+
|
762 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
763 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
764 |
+
|
765 |
+
attn_output = self.wo(attn_output)
|
766 |
+
|
767 |
+
return attn_output, None, past_key_value
|
768 |
+
|
769 |
+
|
770 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
771 |
+
'eager': InternLM2Attention,
|
772 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
773 |
+
'sdpa': InternLM2SdpaAttention,
|
774 |
+
}
|
775 |
+
|
776 |
+
|
777 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
|
778 |
+
class InternLM2DecoderLayer(nn.Module):
|
779 |
+
"""InternLM2 Decoder Layer.
|
780 |
+
|
781 |
+
This module is a single layer of the InternLM2 model.
|
782 |
+
"""
|
783 |
+
|
784 |
+
def __init__(self, config: InternLM2Config, layer_idx: int):
|
785 |
+
super().__init__()
|
786 |
+
self.hidden_size = config.hidden_size
|
787 |
+
self.layer_idx = layer_idx
|
788 |
+
|
789 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[
|
790 |
+
config.attn_implementation](config=config, layer_idx=layer_idx)
|
791 |
+
|
792 |
+
self.feed_forward = InternLM2MLP(config)
|
793 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size,
|
794 |
+
eps=config.rms_norm_eps)
|
795 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size,
|
796 |
+
eps=config.rms_norm_eps)
|
797 |
+
|
798 |
+
def forward(
|
799 |
+
self,
|
800 |
+
hidden_states: torch.Tensor,
|
801 |
+
attention_mask: Optional[torch.Tensor] = None,
|
802 |
+
position_ids: Optional[torch.LongTensor] = None,
|
803 |
+
past_key_value: Optional[Cache] = None,
|
804 |
+
output_attentions: Optional[bool] = False,
|
805 |
+
use_cache: Optional[bool] = False,
|
806 |
+
cache_position: Optional[torch.LongTensor] = None,
|
807 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
808 |
+
torch.FloatTensor]]]:
|
809 |
+
"""
|
810 |
+
Args:
|
811 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
812 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
813 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
814 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
815 |
+
output_attentions (`bool`, *optional*):
|
816 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
817 |
+
returned tensors for more detail.
|
818 |
+
use_cache (`bool`, *optional*):
|
819 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
820 |
+
(see `past_key_values`).
|
821 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
822 |
+
"""
|
823 |
+
residual = hidden_states
|
824 |
+
|
825 |
+
hidden_states = self.attention_norm(hidden_states)
|
826 |
+
|
827 |
+
# Self Attention
|
828 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
829 |
+
hidden_states=hidden_states,
|
830 |
+
attention_mask=attention_mask,
|
831 |
+
position_ids=position_ids,
|
832 |
+
past_key_value=past_key_value,
|
833 |
+
output_attentions=output_attentions,
|
834 |
+
use_cache=use_cache,
|
835 |
+
cache_position=cache_position,
|
836 |
+
)
|
837 |
+
hidden_states = residual + hidden_states
|
838 |
+
|
839 |
+
# Fully Connected
|
840 |
+
residual = hidden_states
|
841 |
+
hidden_states = self.ffn_norm(hidden_states)
|
842 |
+
hidden_states = self.feed_forward(hidden_states)
|
843 |
+
hidden_states = residual + hidden_states
|
844 |
+
|
845 |
+
outputs = (hidden_states, )
|
846 |
+
|
847 |
+
if output_attentions:
|
848 |
+
outputs += (self_attn_weights, )
|
849 |
+
|
850 |
+
if use_cache:
|
851 |
+
outputs += (present_key_value, )
|
852 |
+
|
853 |
+
return outputs
|
854 |
+
|
855 |
+
|
856 |
+
InternLM2_START_DOCSTRING = r"""
|
857 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
858 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
859 |
+
etc.)
|
860 |
+
|
861 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
862 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
863 |
+
and behavior.
|
864 |
+
|
865 |
+
Parameters:
|
866 |
+
config ([`InternLM2Config`]):
|
867 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
868 |
+
load the weights associated with the model, only the configuration. Check out the
|
869 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
870 |
+
"""
|
871 |
+
|
872 |
+
|
873 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
874 |
+
@add_start_docstrings(
|
875 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
876 |
+
InternLM2_START_DOCSTRING,
|
877 |
+
)
|
878 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
879 |
+
"""InternLM2 pretraiend model's base class."""
|
880 |
+
|
881 |
+
config_class = InternLM2Config
|
882 |
+
base_model_prefix = 'model'
|
883 |
+
supports_gradient_checkpointing = True
|
884 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
885 |
+
_skip_keys_device_placement = ['past_key_values']
|
886 |
+
_supports_flash_attn_2 = True
|
887 |
+
_supports_sdpa = True
|
888 |
+
_supports_cache_class = True
|
889 |
+
_supports_quantized_cache = True
|
890 |
+
_supports_static_cache = True
|
891 |
+
|
892 |
+
def _init_weights(self, module):
|
893 |
+
std = self.config.initializer_range
|
894 |
+
if isinstance(module, nn.Linear):
|
895 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
896 |
+
if module.bias is not None:
|
897 |
+
module.bias.data.zero_()
|
898 |
+
elif isinstance(module, nn.Embedding):
|
899 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
900 |
+
if module.padding_idx is not None:
|
901 |
+
module.weight.data[module.padding_idx].zero_()
|
902 |
+
|
903 |
+
|
904 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
905 |
+
Args:
|
906 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
907 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
908 |
+
it.
|
909 |
+
|
910 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
911 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
912 |
+
|
913 |
+
[What are input IDs?](../glossary#input-ids)
|
914 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
915 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
916 |
+
|
917 |
+
- 1 for tokens that are **not masked**,
|
918 |
+
- 0 for tokens that are **masked**.
|
919 |
+
|
920 |
+
[What are attention masks?](../glossary#attention-mask)
|
921 |
+
|
922 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
923 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
924 |
+
|
925 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
926 |
+
`past_key_values`).
|
927 |
+
|
928 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
929 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
930 |
+
information on the default strategy.
|
931 |
+
|
932 |
+
- 1 indicates the head is **not masked**,
|
933 |
+
- 0 indicates the head is **masked**.
|
934 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
935 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
936 |
+
config.n_positions - 1]`.
|
937 |
+
|
938 |
+
[What are position IDs?](../glossary#position-ids)
|
939 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
940 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
941 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
942 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
943 |
+
|
944 |
+
Two formats are allowed:
|
945 |
+
- a [`~cache_utils.Cache`] instance;
|
946 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
947 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
948 |
+
cache format.
|
949 |
+
|
950 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
951 |
+
legacy cache format will be returned.
|
952 |
+
|
953 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
954 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
955 |
+
of shape `(batch_size, sequence_length)`.
|
956 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
957 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
958 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
959 |
+
model's internal embedding lookup matrix.
|
960 |
+
use_cache (`bool`, *optional*):
|
961 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
962 |
+
`past_key_values`).
|
963 |
+
output_attentions (`bool`, *optional*):
|
964 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
965 |
+
tensors for more detail.
|
966 |
+
output_hidden_states (`bool`, *optional*):
|
967 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
968 |
+
more detail.
|
969 |
+
return_dict (`bool`, *optional*):
|
970 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
971 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
972 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
973 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
974 |
+
the complete sequence length.
|
975 |
+
"""
|
976 |
+
|
977 |
+
|
978 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
|
979 |
+
@add_start_docstrings(
|
980 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
981 |
+
InternLM2_START_DOCSTRING,
|
982 |
+
)
|
983 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
984 |
+
"""Transformer decoder consisting of *config.num_hidden_layers* layers.
|
985 |
+
Each layer is a [`InternLM2DecoderLayer`]
|
986 |
+
|
987 |
+
Args:
|
988 |
+
config: InternLM2Config
|
989 |
+
"""
|
990 |
+
|
991 |
+
_auto_class = 'AutoModel'
|
992 |
+
|
993 |
+
def __init__(self, config: InternLM2Config):
|
994 |
+
super().__init__(config)
|
995 |
+
self.padding_idx = config.pad_token_id
|
996 |
+
self.vocab_size = config.vocab_size
|
997 |
+
self.config = config
|
998 |
+
|
999 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size,
|
1000 |
+
config.hidden_size,
|
1001 |
+
self.padding_idx)
|
1002 |
+
|
1003 |
+
self.layers = nn.ModuleList([
|
1004 |
+
InternLM2DecoderLayer(config, layer_idx)
|
1005 |
+
for layer_idx in range(config.num_hidden_layers)
|
1006 |
+
])
|
1007 |
+
self.norm = InternLM2RMSNorm(config.hidden_size,
|
1008 |
+
eps=config.rms_norm_eps)
|
1009 |
+
|
1010 |
+
self.gradient_checkpointing = False
|
1011 |
+
# Initialize weights and apply final processing
|
1012 |
+
self.post_init()
|
1013 |
+
|
1014 |
+
def get_input_embeddings(self):
|
1015 |
+
return self.tok_embeddings
|
1016 |
+
|
1017 |
+
def set_input_embeddings(self, value):
|
1018 |
+
self.tok_embeddings = value
|
1019 |
+
|
1020 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1021 |
+
def forward(
|
1022 |
+
self,
|
1023 |
+
input_ids: torch.LongTensor = None,
|
1024 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1025 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1026 |
+
past_key_values: Optional[Union[Cache,
|
1027 |
+
List[torch.FloatTensor]]] = None,
|
1028 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1029 |
+
use_cache: Optional[bool] = None,
|
1030 |
+
output_attentions: Optional[bool] = None,
|
1031 |
+
output_hidden_states: Optional[bool] = None,
|
1032 |
+
return_dict: Optional[bool] = None,
|
1033 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1034 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1035 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1036 |
+
output_hidden_states = (output_hidden_states
|
1037 |
+
if output_hidden_states is not None else
|
1038 |
+
self.config.output_hidden_states)
|
1039 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1040 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1041 |
+
|
1042 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1043 |
+
raise ValueError(
|
1044 |
+
'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1048 |
+
logger.warning_once(
|
1049 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
|
1050 |
+
)
|
1051 |
+
use_cache = False
|
1052 |
+
|
1053 |
+
if inputs_embeds is None:
|
1054 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
1055 |
+
|
1056 |
+
return_legacy_cache = False
|
1057 |
+
if use_cache and not isinstance(
|
1058 |
+
past_key_values,
|
1059 |
+
Cache): # kept for BC (non `Cache` `past_key_values` inputs)
|
1060 |
+
return_legacy_cache = True
|
1061 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1062 |
+
|
1063 |
+
if cache_position is None:
|
1064 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
1065 |
+
) if past_key_values is not None else 0
|
1066 |
+
cache_position = torch.arange(past_seen_tokens,
|
1067 |
+
past_seen_tokens +
|
1068 |
+
inputs_embeds.shape[1],
|
1069 |
+
device=inputs_embeds.device)
|
1070 |
+
if position_ids is None:
|
1071 |
+
position_ids = cache_position.unsqueeze(0)
|
1072 |
+
|
1073 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
|
1074 |
+
cache_position, past_key_values,
|
1075 |
+
output_attentions)
|
1076 |
+
|
1077 |
+
# embed positions
|
1078 |
+
hidden_states = inputs_embeds
|
1079 |
+
|
1080 |
+
# decoder layers
|
1081 |
+
all_hidden_states = () if output_hidden_states else None
|
1082 |
+
all_self_attns = () if output_attentions else None
|
1083 |
+
next_decoder_cache = None
|
1084 |
+
|
1085 |
+
for decoder_layer in self.layers:
|
1086 |
+
if output_hidden_states:
|
1087 |
+
all_hidden_states += (hidden_states, )
|
1088 |
+
|
1089 |
+
if self.gradient_checkpointing and self.training:
|
1090 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1091 |
+
decoder_layer.__call__,
|
1092 |
+
hidden_states,
|
1093 |
+
causal_mask,
|
1094 |
+
position_ids,
|
1095 |
+
past_key_values,
|
1096 |
+
output_attentions,
|
1097 |
+
use_cache,
|
1098 |
+
cache_position,
|
1099 |
+
)
|
1100 |
+
else:
|
1101 |
+
layer_outputs = decoder_layer(
|
1102 |
+
hidden_states,
|
1103 |
+
attention_mask=causal_mask,
|
1104 |
+
position_ids=position_ids,
|
1105 |
+
past_key_value=past_key_values,
|
1106 |
+
output_attentions=output_attentions,
|
1107 |
+
use_cache=use_cache,
|
1108 |
+
cache_position=cache_position,
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
hidden_states = layer_outputs[0]
|
1112 |
+
|
1113 |
+
if use_cache:
|
1114 |
+
next_decoder_cache = layer_outputs[
|
1115 |
+
2 if output_attentions else 1]
|
1116 |
+
|
1117 |
+
if output_attentions:
|
1118 |
+
all_self_attns += (layer_outputs[1], )
|
1119 |
+
|
1120 |
+
hidden_states = self.norm(hidden_states)
|
1121 |
+
|
1122 |
+
# add hidden states from the last decoder layer
|
1123 |
+
if output_hidden_states:
|
1124 |
+
all_hidden_states += (hidden_states, )
|
1125 |
+
|
1126 |
+
next_cache = next_decoder_cache if use_cache else None
|
1127 |
+
if return_legacy_cache:
|
1128 |
+
next_cache = next_cache.to_legacy_cache()
|
1129 |
+
|
1130 |
+
if not return_dict:
|
1131 |
+
return tuple(
|
1132 |
+
v for v in
|
1133 |
+
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1134 |
+
if v is not None)
|
1135 |
+
return BaseModelOutputWithPast(
|
1136 |
+
last_hidden_state=hidden_states,
|
1137 |
+
past_key_values=next_cache,
|
1138 |
+
hidden_states=all_hidden_states,
|
1139 |
+
attentions=all_self_attns,
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
def _update_causal_mask(
|
1143 |
+
self,
|
1144 |
+
attention_mask: torch.Tensor,
|
1145 |
+
input_tensor: torch.Tensor,
|
1146 |
+
cache_position: torch.Tensor,
|
1147 |
+
past_key_values: Cache,
|
1148 |
+
output_attentions: bool,
|
1149 |
+
):
|
1150 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
|
1151 |
+
# even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
|
1152 |
+
# each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
|
1153 |
+
# VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
|
1154 |
+
# See more context in https://github.com/huggingface/transformers/pull/29114
|
1155 |
+
|
1156 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
1157 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1158 |
+
return attention_mask
|
1159 |
+
return None
|
1160 |
+
|
1161 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1162 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1163 |
+
# to infer the attention mask.
|
1164 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
1165 |
+
) if past_key_values is not None else 0
|
1166 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1167 |
+
|
1168 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1169 |
+
if self.config.attn_implementation == 'sdpa' and not using_static_cache and not output_attentions:
|
1170 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1171 |
+
attention_mask,
|
1172 |
+
inputs_embeds=input_tensor,
|
1173 |
+
past_key_values_length=past_seen_tokens,
|
1174 |
+
is_training=self.training,
|
1175 |
+
):
|
1176 |
+
return None
|
1177 |
+
|
1178 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1179 |
+
min_dtype = torch.finfo(dtype).min
|
1180 |
+
sequence_length = input_tensor.shape[1]
|
1181 |
+
if using_static_cache:
|
1182 |
+
target_length = past_key_values.get_max_length()
|
1183 |
+
else:
|
1184 |
+
target_length = (attention_mask.shape[-1] if isinstance(
|
1185 |
+
attention_mask, torch.Tensor) else past_seen_tokens +
|
1186 |
+
sequence_length + 1)
|
1187 |
+
|
1188 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1189 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1190 |
+
if attention_mask.max() != 0:
|
1191 |
+
raise ValueError(
|
1192 |
+
'Custom 4D attention mask should be passed in inverted form with max==0`'
|
1193 |
+
)
|
1194 |
+
causal_mask = attention_mask
|
1195 |
+
else:
|
1196 |
+
causal_mask = torch.full((sequence_length, target_length),
|
1197 |
+
fill_value=min_dtype,
|
1198 |
+
dtype=dtype,
|
1199 |
+
device=device)
|
1200 |
+
if sequence_length != 1:
|
1201 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1202 |
+
causal_mask *= torch.arange(
|
1203 |
+
target_length, device=device) > cache_position.reshape(-1, 1)
|
1204 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
1205 |
+
input_tensor.shape[0], 1, -1, -1)
|
1206 |
+
if attention_mask is not None:
|
1207 |
+
causal_mask = causal_mask.clone(
|
1208 |
+
) # copy to contiguous memory for in-place edit
|
1209 |
+
mask_length = attention_mask.shape[-1]
|
1210 |
+
padding_mask = causal_mask[:, :, :, :
|
1211 |
+
mask_length] + attention_mask[:,
|
1212 |
+
None,
|
1213 |
+
None, :]
|
1214 |
+
padding_mask = padding_mask == 0
|
1215 |
+
causal_mask[:, :, :, :
|
1216 |
+
mask_length] = causal_mask[:, :, :, :
|
1217 |
+
mask_length].masked_fill(
|
1218 |
+
padding_mask,
|
1219 |
+
min_dtype)
|
1220 |
+
if (self.config.attn_implementation == 'sdpa'
|
1221 |
+
and attention_mask is not None
|
1222 |
+
and attention_mask.device.type == 'cuda'
|
1223 |
+
and not output_attentions):
|
1224 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1225 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1226 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1227 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
1228 |
+
causal_mask, min_dtype) # pylint: disable=E1120
|
1229 |
+
|
1230 |
+
return causal_mask
|
1231 |
+
|
1232 |
+
|
1233 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
|
1234 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1235 |
+
"""Causal language model (CLM) for InternLM2."""
|
1236 |
+
|
1237 |
+
_auto_class = 'AutoModelForCausalLM'
|
1238 |
+
_tied_weights_keys = ['output.weight']
|
1239 |
+
|
1240 |
+
def __init__(self, config):
|
1241 |
+
super().__init__(config)
|
1242 |
+
self.model = InternLM2Model(config)
|
1243 |
+
self.vocab_size = config.vocab_size
|
1244 |
+
self.output = nn.Linear(config.hidden_size,
|
1245 |
+
config.vocab_size,
|
1246 |
+
bias=False)
|
1247 |
+
|
1248 |
+
# Initialize weights and apply final processing
|
1249 |
+
self.post_init()
|
1250 |
+
convert_to_qmodules(self)
|
1251 |
+
|
1252 |
+
def get_input_embeddings(self):
|
1253 |
+
return self.model.tok_embeddings
|
1254 |
+
|
1255 |
+
def set_input_embeddings(self, value):
|
1256 |
+
self.model.tok_embeddings = value
|
1257 |
+
|
1258 |
+
def get_output_embeddings(self):
|
1259 |
+
return self.output
|
1260 |
+
|
1261 |
+
def set_output_embeddings(self, new_embeddings):
|
1262 |
+
self.output = new_embeddings
|
1263 |
+
|
1264 |
+
def set_decoder(self, decoder):
|
1265 |
+
self.model = decoder
|
1266 |
+
|
1267 |
+
def get_decoder(self):
|
1268 |
+
return self.model
|
1269 |
+
|
1270 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1271 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast,
|
1272 |
+
config_class=_CONFIG_FOR_DOC)
|
1273 |
+
def forward(
|
1274 |
+
self,
|
1275 |
+
input_ids: torch.LongTensor = None,
|
1276 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1277 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1278 |
+
past_key_values: Optional[Union[Cache,
|
1279 |
+
List[torch.FloatTensor]]] = None,
|
1280 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1281 |
+
labels: Optional[torch.LongTensor] = None,
|
1282 |
+
use_cache: Optional[bool] = None,
|
1283 |
+
output_attentions: Optional[bool] = None,
|
1284 |
+
output_hidden_states: Optional[bool] = None,
|
1285 |
+
return_dict: Optional[bool] = None,
|
1286 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1287 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1288 |
+
r"""
|
1289 |
+
Args:
|
1290 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1291 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1292 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1293 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1294 |
+
|
1295 |
+
Returns:
|
1296 |
+
|
1297 |
+
Example:
|
1298 |
+
|
1299 |
+
```python
|
1300 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1301 |
+
|
1302 |
+
>>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1303 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1304 |
+
|
1305 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1306 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1307 |
+
|
1308 |
+
>>> # Generate
|
1309 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1310 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1311 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1312 |
+
```"""
|
1313 |
+
|
1314 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1315 |
+
output_hidden_states = (output_hidden_states
|
1316 |
+
if output_hidden_states is not None else
|
1317 |
+
self.config.output_hidden_states)
|
1318 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1319 |
+
|
1320 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1321 |
+
outputs = self.model(
|
1322 |
+
input_ids=input_ids,
|
1323 |
+
attention_mask=attention_mask,
|
1324 |
+
position_ids=position_ids,
|
1325 |
+
past_key_values=past_key_values,
|
1326 |
+
inputs_embeds=inputs_embeds,
|
1327 |
+
use_cache=use_cache,
|
1328 |
+
output_attentions=output_attentions,
|
1329 |
+
output_hidden_states=output_hidden_states,
|
1330 |
+
return_dict=return_dict,
|
1331 |
+
cache_position=cache_position,
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
hidden_states = outputs[0]
|
1335 |
+
if self.config.pretraining_tp > 1:
|
1336 |
+
output_slices = self.output.weight.split(
|
1337 |
+
self.vocab_size // self.config.pretraining_tp, dim=0)
|
1338 |
+
logits = [
|
1339 |
+
F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
|
1340 |
+
for i in range(self.config.pretraining_tp)
|
1341 |
+
]
|
1342 |
+
logits = torch.cat(logits, dim=-1)
|
1343 |
+
else:
|
1344 |
+
logits = self.output(hidden_states)
|
1345 |
+
logits = logits.float()
|
1346 |
+
|
1347 |
+
loss = None
|
1348 |
+
if labels is not None:
|
1349 |
+
# Shift so that tokens < n predict n
|
1350 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1351 |
+
shift_labels = labels[..., 1:].contiguous()
|
1352 |
+
# Flatten the tokens
|
1353 |
+
loss_fct = CrossEntropyLoss()
|
1354 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1355 |
+
shift_labels = shift_labels.view(-1)
|
1356 |
+
# Enable model parallelism
|
1357 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1358 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1359 |
+
|
1360 |
+
if not return_dict:
|
1361 |
+
output = (logits, ) + outputs[1:]
|
1362 |
+
return (loss, ) + output if loss is not None else output
|
1363 |
+
|
1364 |
+
return CausalLMOutputWithPast(
|
1365 |
+
loss=loss,
|
1366 |
+
logits=logits,
|
1367 |
+
past_key_values=outputs.past_key_values,
|
1368 |
+
hidden_states=outputs.hidden_states,
|
1369 |
+
attentions=outputs.attentions,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
def prepare_inputs_for_generation(
|
1373 |
+
self,
|
1374 |
+
input_ids,
|
1375 |
+
past_key_values=None,
|
1376 |
+
attention_mask=None,
|
1377 |
+
inputs_embeds=None,
|
1378 |
+
cache_position=None,
|
1379 |
+
use_cache=True,
|
1380 |
+
**kwargs,
|
1381 |
+
):
|
1382 |
+
past_length = 0
|
1383 |
+
if past_key_values is not None:
|
1384 |
+
if isinstance(past_key_values, Cache):
|
1385 |
+
past_length = cache_position[
|
1386 |
+
0] if cache_position is not None else past_key_values.get_seq_length(
|
1387 |
+
)
|
1388 |
+
max_cache_length = (torch.tensor(
|
1389 |
+
past_key_values.get_max_length(), device=input_ids.device)
|
1390 |
+
if past_key_values.get_max_length()
|
1391 |
+
is not None else None)
|
1392 |
+
cache_length = past_length if max_cache_length is None else torch.min(
|
1393 |
+
max_cache_length, past_length)
|
1394 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1395 |
+
else:
|
1396 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1397 |
+
max_cache_length = None
|
1398 |
+
|
1399 |
+
# Keep only the unprocessed tokens:
|
1400 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1401 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
1402 |
+
if attention_mask is not None and attention_mask.shape[
|
1403 |
+
1] > input_ids.shape[1]:
|
1404 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] -
|
1405 |
+
past_length):]
|
1406 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1407 |
+
# input_ids based on the past_length.
|
1408 |
+
elif past_length < input_ids.shape[1]:
|
1409 |
+
input_ids = input_ids[:, past_length:]
|
1410 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1411 |
+
|
1412 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1413 |
+
if (max_cache_length is not None and attention_mask is not None
|
1414 |
+
and cache_length + input_ids.shape[1] > max_cache_length):
|
1415 |
+
attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
|
1416 |
+
|
1417 |
+
position_ids = kwargs.get('position_ids', None)
|
1418 |
+
if attention_mask is not None and position_ids is None:
|
1419 |
+
# create position_ids on the fly for batch generation
|
1420 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1421 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1422 |
+
if past_key_values:
|
1423 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1424 |
+
|
1425 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1426 |
+
if inputs_embeds is not None and past_key_values is None:
|
1427 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1428 |
+
else:
|
1429 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1430 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
1431 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
1432 |
+
# TODO: use `next_tokens` directly instead.
|
1433 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
1434 |
+
|
1435 |
+
input_length = position_ids.shape[
|
1436 |
+
-1] if position_ids is not None else input_ids.shape[-1]
|
1437 |
+
if cache_position is None:
|
1438 |
+
cache_position = torch.arange(past_length,
|
1439 |
+
past_length + input_length,
|
1440 |
+
device=input_ids.device)
|
1441 |
+
elif use_cache:
|
1442 |
+
cache_position = cache_position[-input_length:]
|
1443 |
+
|
1444 |
+
model_inputs.update({
|
1445 |
+
'position_ids': position_ids,
|
1446 |
+
'cache_position': cache_position,
|
1447 |
+
'past_key_values': past_key_values,
|
1448 |
+
'use_cache': use_cache,
|
1449 |
+
'attention_mask': attention_mask,
|
1450 |
+
})
|
1451 |
+
return model_inputs
|
1452 |
+
|
1453 |
+
@staticmethod
|
1454 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1455 |
+
reordered_past = ()
|
1456 |
+
for layer_past in past_key_values:
|
1457 |
+
reordered_past += (tuple(
|
1458 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1459 |
+
for past_state in layer_past), )
|
1460 |
+
return reordered_past
|
1461 |
+
|
1462 |
+
def build_inputs(self,
|
1463 |
+
tokenizer,
|
1464 |
+
query: str,
|
1465 |
+
history: List[Tuple[str, str]] = None,
|
1466 |
+
meta_instruction=''):
|
1467 |
+
if history is None:
|
1468 |
+
history = []
|
1469 |
+
if tokenizer.add_bos_token:
|
1470 |
+
prompt = ''
|
1471 |
+
else:
|
1472 |
+
prompt = tokenizer.bos_token
|
1473 |
+
if meta_instruction:
|
1474 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1475 |
+
for record in history:
|
1476 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1477 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1478 |
+
return tokenizer([prompt], return_tensors='pt')
|
1479 |
+
|
1480 |
+
@torch.no_grad()
|
1481 |
+
def chat(
|
1482 |
+
self,
|
1483 |
+
tokenizer,
|
1484 |
+
query: str,
|
1485 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
1486 |
+
streamer: Optional[BaseStreamer] = None,
|
1487 |
+
max_new_tokens: int = 1024,
|
1488 |
+
do_sample: bool = True,
|
1489 |
+
temperature: float = 0.8,
|
1490 |
+
top_p: float = 0.8,
|
1491 |
+
meta_instruction:
|
1492 |
+
str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
1493 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory '
|
1494 |
+
'(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
1495 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such '
|
1496 |
+
'as English and 中文.',
|
1497 |
+
**kwargs,
|
1498 |
+
):
|
1499 |
+
if history is None:
|
1500 |
+
history = []
|
1501 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1502 |
+
inputs = {
|
1503 |
+
k: v.to(self.device)
|
1504 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
1505 |
+
}
|
1506 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1507 |
+
eos_token_id = [
|
1508 |
+
tokenizer.eos_token_id,
|
1509 |
+
tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]
|
1510 |
+
]
|
1511 |
+
outputs = self.generate(
|
1512 |
+
**inputs,
|
1513 |
+
streamer=streamer,
|
1514 |
+
max_new_tokens=max_new_tokens,
|
1515 |
+
do_sample=do_sample,
|
1516 |
+
temperature=temperature,
|
1517 |
+
top_p=top_p,
|
1518 |
+
eos_token_id=eos_token_id,
|
1519 |
+
**kwargs,
|
1520 |
+
)
|
1521 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
1522 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1523 |
+
response = response.split('<|im_end|>')[0]
|
1524 |
+
history = history + [(query, response)]
|
1525 |
+
return response, history
|
1526 |
+
|
1527 |
+
@torch.no_grad()
|
1528 |
+
def stream_chat(
|
1529 |
+
self,
|
1530 |
+
tokenizer,
|
1531 |
+
query: str,
|
1532 |
+
history: List[Tuple[str, str]] = None,
|
1533 |
+
max_new_tokens: int = 1024,
|
1534 |
+
do_sample: bool = True,
|
1535 |
+
temperature: float = 0.8,
|
1536 |
+
top_p: float = 0.8,
|
1537 |
+
**kwargs,
|
1538 |
+
):
|
1539 |
+
if history is None:
|
1540 |
+
history = []
|
1541 |
+
"""
|
1542 |
+
Return a generator in format: (response, history)
|
1543 |
+
Eg.
|
1544 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1545 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1546 |
+
"""
|
1547 |
+
if BaseStreamer is None:
|
1548 |
+
raise ModuleNotFoundError(
|
1549 |
+
'The version of `transformers` is too low. Please make sure '
|
1550 |
+
'that you have installed `transformers>=4.28.0`.')
|
1551 |
+
|
1552 |
+
response_queue = queue.Queue(maxsize=20)
|
1553 |
+
|
1554 |
+
class ChatStreamer(BaseStreamer):
|
1555 |
+
"""Streamer used in generate to print words one by one."""
|
1556 |
+
|
1557 |
+
def __init__(self, tokenizer) -> None:
|
1558 |
+
super().__init__()
|
1559 |
+
self.tokenizer = tokenizer
|
1560 |
+
self.queue = response_queue
|
1561 |
+
self.query = query
|
1562 |
+
self.history = history
|
1563 |
+
self.response = ''
|
1564 |
+
self.cache = []
|
1565 |
+
self.received_inputs = False
|
1566 |
+
self.queue.put(
|
1567 |
+
(self.response, history + [(self.query, self.response)]))
|
1568 |
+
|
1569 |
+
def put(self, value):
|
1570 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1571 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1572 |
+
elif len(value.shape) > 1:
|
1573 |
+
value = value[0]
|
1574 |
+
|
1575 |
+
if not self.received_inputs:
|
1576 |
+
# The first received value is input_ids, ignore here
|
1577 |
+
self.received_inputs = True
|
1578 |
+
return
|
1579 |
+
|
1580 |
+
self.cache.extend(value.tolist())
|
1581 |
+
token = self.tokenizer.decode(self.cache,
|
1582 |
+
skip_special_tokens=True)
|
1583 |
+
if token.strip() != '<|im_end|>':
|
1584 |
+
self.response = self.response + token
|
1585 |
+
history = self.history + [(self.query, self.response)]
|
1586 |
+
self.queue.put((self.response, history))
|
1587 |
+
self.cache = []
|
1588 |
+
else:
|
1589 |
+
self.end()
|
1590 |
+
|
1591 |
+
def end(self):
|
1592 |
+
self.queue.put(None)
|
1593 |
+
|
1594 |
+
def stream_producer():
|
1595 |
+
return self.chat(
|
1596 |
+
tokenizer=tokenizer,
|
1597 |
+
query=query,
|
1598 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1599 |
+
history=history,
|
1600 |
+
max_new_tokens=max_new_tokens,
|
1601 |
+
do_sample=do_sample,
|
1602 |
+
temperature=temperature,
|
1603 |
+
top_p=top_p,
|
1604 |
+
**kwargs,
|
1605 |
+
)
|
1606 |
+
|
1607 |
+
def consumer():
|
1608 |
+
producer = threading.Thread(target=stream_producer)
|
1609 |
+
producer.start()
|
1610 |
+
while True:
|
1611 |
+
res = response_queue.get()
|
1612 |
+
if res is None:
|
1613 |
+
return
|
1614 |
+
yield res
|
1615 |
+
|
1616 |
+
return consumer()
|
1617 |
+
|
1618 |
+
|
1619 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1620 |
+
@add_start_docstrings(
|
1621 |
+
"""
|
1622 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1623 |
+
|
1624 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1625 |
+
(e.g. GPT-2) do.
|
1626 |
+
|
1627 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1628 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1629 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1630 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1631 |
+
each row of the batch).
|
1632 |
+
""",
|
1633 |
+
InternLM2_START_DOCSTRING,
|
1634 |
+
)
|
1635 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1636 |
+
"""Sequence Classification Head for InternLM2 Model."""
|
1637 |
+
|
1638 |
+
def __init__(self, config):
|
1639 |
+
super().__init__(config)
|
1640 |
+
self.num_labels = config.num_labels
|
1641 |
+
self.model = InternLM2Model(config)
|
1642 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1643 |
+
|
1644 |
+
# Initialize weights and apply final processing
|
1645 |
+
self.post_init()
|
1646 |
+
|
1647 |
+
def get_input_embeddings(self):
|
1648 |
+
return self.model.tok_embeddings
|
1649 |
+
|
1650 |
+
def set_input_embeddings(self, value):
|
1651 |
+
self.model.tok_embeddings = value
|
1652 |
+
|
1653 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1654 |
+
def forward(
|
1655 |
+
self,
|
1656 |
+
input_ids: torch.LongTensor = None,
|
1657 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1658 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1659 |
+
past_key_values: Optional[Union[Cache,
|
1660 |
+
List[torch.FloatTensor]]] = None,
|
1661 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1662 |
+
labels: Optional[torch.LongTensor] = None,
|
1663 |
+
use_cache: Optional[bool] = None,
|
1664 |
+
output_attentions: Optional[bool] = None,
|
1665 |
+
output_hidden_states: Optional[bool] = None,
|
1666 |
+
return_dict: Optional[bool] = None,
|
1667 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1668 |
+
r"""
|
1669 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1670 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1671 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1672 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1673 |
+
"""
|
1674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1675 |
+
|
1676 |
+
transformer_outputs = self.model(
|
1677 |
+
input_ids,
|
1678 |
+
attention_mask=attention_mask,
|
1679 |
+
position_ids=position_ids,
|
1680 |
+
past_key_values=past_key_values,
|
1681 |
+
inputs_embeds=inputs_embeds,
|
1682 |
+
use_cache=use_cache,
|
1683 |
+
output_attentions=output_attentions,
|
1684 |
+
output_hidden_states=output_hidden_states,
|
1685 |
+
return_dict=return_dict,
|
1686 |
+
)
|
1687 |
+
hidden_states = transformer_outputs[0]
|
1688 |
+
logits = self.score(hidden_states)
|
1689 |
+
|
1690 |
+
if input_ids is not None:
|
1691 |
+
batch_size = input_ids.shape[0]
|
1692 |
+
else:
|
1693 |
+
batch_size = inputs_embeds.shape[0]
|
1694 |
+
|
1695 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1696 |
+
raise ValueError(
|
1697 |
+
'Cannot handle batch sizes > 1 if no padding token is defined.'
|
1698 |
+
)
|
1699 |
+
if self.config.pad_token_id is None:
|
1700 |
+
sequence_lengths = -1
|
1701 |
+
else:
|
1702 |
+
if input_ids is not None:
|
1703 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1704 |
+
sequence_lengths = torch.eq(
|
1705 |
+
input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1706 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1707 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1708 |
+
else:
|
1709 |
+
sequence_lengths = -1
|
1710 |
+
|
1711 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device),
|
1712 |
+
sequence_lengths]
|
1713 |
+
|
1714 |
+
loss = None
|
1715 |
+
if labels is not None:
|
1716 |
+
labels = labels.to(logits.device)
|
1717 |
+
if self.config.problem_type is None:
|
1718 |
+
if self.num_labels == 1:
|
1719 |
+
self.config.problem_type = 'regression'
|
1720 |
+
elif self.num_labels > 1 and (labels.dtype
|
1721 |
+
in (torch.long, torch.int)):
|
1722 |
+
self.config.problem_type = 'single_label_classification'
|
1723 |
+
else:
|
1724 |
+
self.config.problem_type = 'multi_label_classification'
|
1725 |
+
|
1726 |
+
if self.config.problem_type == 'regression':
|
1727 |
+
loss_fct = MSELoss()
|
1728 |
+
if self.num_labels == 1:
|
1729 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1730 |
+
else:
|
1731 |
+
loss = loss_fct(pooled_logits, labels)
|
1732 |
+
elif self.config.problem_type == 'single_label_classification':
|
1733 |
+
loss_fct = CrossEntropyLoss()
|
1734 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels),
|
1735 |
+
labels.view(-1))
|
1736 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1737 |
+
loss_fct = BCEWithLogitsLoss()
|
1738 |
+
loss = loss_fct(pooled_logits, labels)
|
1739 |
+
if not return_dict:
|
1740 |
+
output = (pooled_logits, ) + transformer_outputs[1:]
|
1741 |
+
return ((loss, ) + output) if loss is not None else output
|
1742 |
+
|
1743 |
+
return SequenceClassifierOutputWithPast(
|
1744 |
+
loss=loss,
|
1745 |
+
logits=pooled_logits,
|
1746 |
+
past_key_values=transformer_outputs.past_key_values,
|
1747 |
+
hidden_states=transformer_outputs.hidden_states,
|
1748 |
+
attentions=transformer_outputs.attentions,
|
1749 |
+
)
|
1750 |
+
|
1751 |
+
|
1752 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
|
1753 |
+
@add_start_docstrings(
|
1754 |
+
"""
|
1755 |
+
The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
1756 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1757 |
+
""",
|
1758 |
+
InternLM2_START_DOCSTRING,
|
1759 |
+
)
|
1760 |
+
class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
|
1761 |
+
"""Question Answering model for InternLM2."""
|
1762 |
+
|
1763 |
+
base_model_prefix = 'transformer'
|
1764 |
+
|
1765 |
+
def __init__(self, config):
|
1766 |
+
super().__init__(config)
|
1767 |
+
self.transformer = InternLM2Model(config)
|
1768 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1769 |
+
|
1770 |
+
# Initialize weights and apply final processing
|
1771 |
+
self.post_init()
|
1772 |
+
|
1773 |
+
def get_input_embeddings(self):
|
1774 |
+
return self.transformer.embed_tokens
|
1775 |
+
|
1776 |
+
def set_input_embeddings(self, value):
|
1777 |
+
self.transformer.embed_tokens = value
|
1778 |
+
|
1779 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1780 |
+
def forward(
|
1781 |
+
self,
|
1782 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1783 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1784 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1785 |
+
past_key_values: Optional[Union[Cache,
|
1786 |
+
List[torch.FloatTensor]]] = None,
|
1787 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1788 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1789 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1790 |
+
output_attentions: Optional[bool] = None,
|
1791 |
+
output_hidden_states: Optional[bool] = None,
|
1792 |
+
return_dict: Optional[bool] = None,
|
1793 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1794 |
+
r"""
|
1795 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1796 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1797 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1798 |
+
are not taken into account for computing the loss.
|
1799 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1800 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1801 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1802 |
+
are not taken into account for computing the loss.
|
1803 |
+
"""
|
1804 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1805 |
+
|
1806 |
+
outputs = self.transformer(
|
1807 |
+
input_ids,
|
1808 |
+
attention_mask=attention_mask,
|
1809 |
+
position_ids=position_ids,
|
1810 |
+
past_key_values=past_key_values,
|
1811 |
+
inputs_embeds=inputs_embeds,
|
1812 |
+
output_attentions=output_attentions,
|
1813 |
+
output_hidden_states=output_hidden_states,
|
1814 |
+
return_dict=return_dict,
|
1815 |
+
)
|
1816 |
+
|
1817 |
+
sequence_output = outputs[0]
|
1818 |
+
|
1819 |
+
logits = self.qa_outputs(sequence_output)
|
1820 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1821 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1822 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1823 |
+
|
1824 |
+
total_loss = None
|
1825 |
+
if start_positions is not None and end_positions is not None:
|
1826 |
+
# If we are on multi-GPU, split add a dimension
|
1827 |
+
if len(start_positions.size()) > 1:
|
1828 |
+
start_positions = start_positions.squeeze(-1).to(
|
1829 |
+
start_logits.device)
|
1830 |
+
if len(end_positions.size()) > 1:
|
1831 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1832 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1833 |
+
ignored_index = start_logits.size(1)
|
1834 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1835 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1836 |
+
|
1837 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1838 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1839 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1840 |
+
total_loss = (start_loss + end_loss) / 2
|
1841 |
+
|
1842 |
+
if not return_dict:
|
1843 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1844 |
+
return ((total_loss, ) +
|
1845 |
+
output) if total_loss is not None else output
|
1846 |
+
|
1847 |
+
return QuestionAnsweringModelOutput(
|
1848 |
+
loss=total_loss,
|
1849 |
+
start_logits=start_logits,
|
1850 |
+
end_logits=end_logits,
|
1851 |
+
hidden_states=outputs.hidden_states,
|
1852 |
+
attentions=outputs.attentions,
|
1853 |
+
)
|
1854 |
+
|
1855 |
+
|
1856 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
|
1857 |
+
@add_start_docstrings(
|
1858 |
+
"""
|
1859 |
+
The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1860 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1861 |
+
""",
|
1862 |
+
InternLM2_START_DOCSTRING,
|
1863 |
+
)
|
1864 |
+
class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
|
1865 |
+
"""Token classification model for InternLM2."""
|
1866 |
+
|
1867 |
+
def __init__(self, config):
|
1868 |
+
super().__init__(config)
|
1869 |
+
self.num_labels = config.num_labels
|
1870 |
+
self.model = InternLM2Model(config)
|
1871 |
+
if getattr(config, 'classifier_dropout', None) is not None:
|
1872 |
+
classifier_dropout = config.classifier_dropout
|
1873 |
+
elif getattr(config, 'hidden_dropout', None) is not None:
|
1874 |
+
classifier_dropout = config.hidden_dropout
|
1875 |
+
else:
|
1876 |
+
classifier_dropout = 0.1
|
1877 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1878 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1879 |
+
|
1880 |
+
# Initialize weights and apply final processing
|
1881 |
+
self.post_init()
|
1882 |
+
|
1883 |
+
def get_input_embeddings(self):
|
1884 |
+
return self.model.embed_tokens
|
1885 |
+
|
1886 |
+
def set_input_embeddings(self, value):
|
1887 |
+
self.model.embed_tokens = value
|
1888 |
+
|
1889 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1890 |
+
def forward(
|
1891 |
+
self,
|
1892 |
+
input_ids: torch.LongTensor = None,
|
1893 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1894 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1896 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1897 |
+
labels: Optional[torch.LongTensor] = None,
|
1898 |
+
use_cache: Optional[bool] = None,
|
1899 |
+
output_attentions: Optional[bool] = None,
|
1900 |
+
output_hidden_states: Optional[bool] = None,
|
1901 |
+
return_dict: Optional[bool] = None,
|
1902 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1903 |
+
r"""
|
1904 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1905 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1906 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1907 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1908 |
+
"""
|
1909 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1910 |
+
|
1911 |
+
outputs = self.model(
|
1912 |
+
input_ids,
|
1913 |
+
attention_mask=attention_mask,
|
1914 |
+
position_ids=position_ids,
|
1915 |
+
past_key_values=past_key_values,
|
1916 |
+
inputs_embeds=inputs_embeds,
|
1917 |
+
use_cache=use_cache,
|
1918 |
+
output_attentions=output_attentions,
|
1919 |
+
output_hidden_states=output_hidden_states,
|
1920 |
+
return_dict=return_dict,
|
1921 |
+
)
|
1922 |
+
sequence_output = outputs[0]
|
1923 |
+
sequence_output = self.dropout(sequence_output)
|
1924 |
+
logits = self.score(sequence_output)
|
1925 |
+
|
1926 |
+
loss = None
|
1927 |
+
if labels is not None:
|
1928 |
+
loss_fct = CrossEntropyLoss()
|
1929 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1930 |
+
|
1931 |
+
if not return_dict:
|
1932 |
+
output = (logits, ) + outputs[2:]
|
1933 |
+
return ((loss, ) + output) if loss is not None else output
|
1934 |
+
|
1935 |
+
return TokenClassifierOutput(
|
1936 |
+
loss=loss,
|
1937 |
+
logits=logits,
|
1938 |
+
hidden_states=outputs.hidden_states,
|
1939 |
+
attentions=outputs.attentions,
|
1940 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
import transformers
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
14 |
+
LlamaTokenizer)
|
15 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import ModelOutput, logging
|
18 |
+
|
19 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
20 |
+
from .conversation import get_conv_template
|
21 |
+
from .modeling_intern_vit import InternVisionModel
|
22 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def version_cmp(v1, v2, op='eq'):
|
28 |
+
import operator
|
29 |
+
|
30 |
+
from packaging import version
|
31 |
+
op_func = getattr(operator, op)
|
32 |
+
return op_func(version.parse(v1), version.parse(v2))
|
33 |
+
|
34 |
+
|
35 |
+
class InternVLChatModel(PreTrainedModel):
|
36 |
+
config_class = InternVLChatConfig
|
37 |
+
main_input_name = 'pixel_values'
|
38 |
+
_supports_flash_attn_2 = True
|
39 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
|
40 |
+
|
41 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
42 |
+
super().__init__(config)
|
43 |
+
|
44 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
45 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
46 |
+
patch_size = config.vision_config.patch_size
|
47 |
+
self.patch_size = patch_size
|
48 |
+
self.select_layer = config.select_layer
|
49 |
+
self.template = config.template
|
50 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
51 |
+
self.downsample_ratio = config.downsample_ratio
|
52 |
+
self.ps_version = config.ps_version
|
53 |
+
|
54 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
55 |
+
logger.info(f'ps_version: {self.ps_version}')
|
56 |
+
if vision_model is not None:
|
57 |
+
self.vision_model = vision_model
|
58 |
+
else:
|
59 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
60 |
+
if language_model is not None:
|
61 |
+
self.language_model = language_model
|
62 |
+
else:
|
63 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
64 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
65 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
66 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
67 |
+
else:
|
68 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
69 |
+
|
70 |
+
vit_hidden_size = config.vision_config.hidden_size
|
71 |
+
llm_hidden_size = config.llm_config.hidden_size
|
72 |
+
|
73 |
+
self.mlp1 = nn.Sequential(
|
74 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
75 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
76 |
+
nn.GELU(),
|
77 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
78 |
+
)
|
79 |
+
|
80 |
+
self.img_context_token_id = None
|
81 |
+
self.conv_template = get_conv_template(self.template)
|
82 |
+
self.system_message = self.conv_template.system_message
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
pixel_values: torch.FloatTensor,
|
87 |
+
input_ids: torch.LongTensor = None,
|
88 |
+
attention_mask: Optional[torch.Tensor] = None,
|
89 |
+
position_ids: Optional[torch.LongTensor] = None,
|
90 |
+
image_flags: Optional[torch.LongTensor] = None,
|
91 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
92 |
+
labels: Optional[torch.LongTensor] = None,
|
93 |
+
use_cache: Optional[bool] = None,
|
94 |
+
output_attentions: Optional[bool] = None,
|
95 |
+
output_hidden_states: Optional[bool] = None,
|
96 |
+
return_dict: Optional[bool] = None,
|
97 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
98 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
99 |
+
|
100 |
+
image_flags = image_flags.squeeze(-1)
|
101 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
102 |
+
|
103 |
+
vit_embeds = self.extract_feature(pixel_values)
|
104 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
105 |
+
vit_batch_size = pixel_values.shape[0]
|
106 |
+
|
107 |
+
B, N, C = input_embeds.shape
|
108 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
109 |
+
|
110 |
+
if torch.distributed.get_rank() == 0:
|
111 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
112 |
+
|
113 |
+
input_ids = input_ids.reshape(B * N)
|
114 |
+
selected = (input_ids == self.img_context_token_id)
|
115 |
+
try:
|
116 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
117 |
+
except Exception as e:
|
118 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
119 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
120 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
121 |
+
n_token = selected.sum()
|
122 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
123 |
+
|
124 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
125 |
+
|
126 |
+
outputs = self.language_model(
|
127 |
+
inputs_embeds=input_embeds,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
position_ids=position_ids,
|
130 |
+
past_key_values=past_key_values,
|
131 |
+
use_cache=use_cache,
|
132 |
+
output_attentions=output_attentions,
|
133 |
+
output_hidden_states=output_hidden_states,
|
134 |
+
return_dict=return_dict,
|
135 |
+
)
|
136 |
+
logits = outputs.logits
|
137 |
+
|
138 |
+
loss = None
|
139 |
+
if labels is not None:
|
140 |
+
# Shift so that tokens < n predict n
|
141 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
142 |
+
shift_labels = labels[..., 1:].contiguous()
|
143 |
+
# Flatten the tokens
|
144 |
+
loss_fct = CrossEntropyLoss()
|
145 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
146 |
+
shift_labels = shift_labels.view(-1)
|
147 |
+
# Enable model parallelism
|
148 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
149 |
+
loss = loss_fct(shift_logits, shift_labels)
|
150 |
+
|
151 |
+
if not return_dict:
|
152 |
+
output = (logits,) + outputs[1:]
|
153 |
+
return (loss,) + output if loss is not None else output
|
154 |
+
|
155 |
+
return CausalLMOutputWithPast(
|
156 |
+
loss=loss,
|
157 |
+
logits=logits,
|
158 |
+
past_key_values=outputs.past_key_values,
|
159 |
+
hidden_states=outputs.hidden_states,
|
160 |
+
attentions=outputs.attentions,
|
161 |
+
)
|
162 |
+
|
163 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
164 |
+
n, w, h, c = x.size()
|
165 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
166 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
167 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
168 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
169 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
170 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
171 |
+
int(c / (scale_factor * scale_factor)))
|
172 |
+
if self.ps_version == 'v1':
|
173 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
174 |
+
'which results in a transposed image.')
|
175 |
+
else:
|
176 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
177 |
+
return x
|
178 |
+
|
179 |
+
def extract_feature(self, pixel_values):
|
180 |
+
if self.select_layer == -1:
|
181 |
+
vit_embeds = self.vision_model(
|
182 |
+
pixel_values=pixel_values,
|
183 |
+
output_hidden_states=False,
|
184 |
+
return_dict=True).last_hidden_state
|
185 |
+
else:
|
186 |
+
vit_embeds = self.vision_model(
|
187 |
+
pixel_values=pixel_values,
|
188 |
+
output_hidden_states=True,
|
189 |
+
return_dict=True).hidden_states[self.select_layer]
|
190 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
191 |
+
|
192 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
193 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
194 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
195 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
196 |
+
vit_embeds = self.mlp1(vit_embeds)
|
197 |
+
return vit_embeds
|
198 |
+
|
199 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
200 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
201 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
202 |
+
if history is not None or return_history:
|
203 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
204 |
+
raise NotImplementedError
|
205 |
+
|
206 |
+
if image_counts is not None:
|
207 |
+
num_patches_list = image_counts
|
208 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
209 |
+
|
210 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
211 |
+
self.img_context_token_id = img_context_token_id
|
212 |
+
|
213 |
+
if verbose and pixel_values is not None:
|
214 |
+
image_bs = pixel_values.shape[0]
|
215 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
216 |
+
|
217 |
+
queries = []
|
218 |
+
for idx, num_patches in enumerate(num_patches_list):
|
219 |
+
question = questions[idx]
|
220 |
+
if pixel_values is not None and '<image>' not in question:
|
221 |
+
question = '<image>\n' + question
|
222 |
+
template = get_conv_template(self.template)
|
223 |
+
template.system_message = self.system_message
|
224 |
+
template.append_message(template.roles[0], question)
|
225 |
+
template.append_message(template.roles[1], None)
|
226 |
+
query = template.get_prompt()
|
227 |
+
|
228 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
229 |
+
query = query.replace('<image>', image_tokens, 1)
|
230 |
+
queries.append(query)
|
231 |
+
|
232 |
+
tokenizer.padding_side = 'left'
|
233 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
234 |
+
input_ids = model_inputs['input_ids'].cuda()
|
235 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
236 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
237 |
+
generation_config['eos_token_id'] = eos_token_id
|
238 |
+
generation_output = self.generate(
|
239 |
+
pixel_values=pixel_values,
|
240 |
+
input_ids=input_ids,
|
241 |
+
attention_mask=attention_mask,
|
242 |
+
**generation_config
|
243 |
+
)
|
244 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
245 |
+
responses = [response.split(template.sep)[0].strip() for response in responses]
|
246 |
+
return responses
|
247 |
+
|
248 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
249 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
250 |
+
verbose=False):
|
251 |
+
|
252 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
253 |
+
question = '<image>\n' + question
|
254 |
+
|
255 |
+
if num_patches_list is None:
|
256 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
257 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
258 |
+
|
259 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
260 |
+
self.img_context_token_id = img_context_token_id
|
261 |
+
|
262 |
+
template = get_conv_template(self.template)
|
263 |
+
template.system_message = self.system_message
|
264 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
265 |
+
|
266 |
+
history = [] if history is None else history
|
267 |
+
for (old_question, old_answer) in history:
|
268 |
+
template.append_message(template.roles[0], old_question)
|
269 |
+
template.append_message(template.roles[1], old_answer)
|
270 |
+
template.append_message(template.roles[0], question)
|
271 |
+
template.append_message(template.roles[1], None)
|
272 |
+
query = template.get_prompt()
|
273 |
+
|
274 |
+
if verbose and pixel_values is not None:
|
275 |
+
image_bs = pixel_values.shape[0]
|
276 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
277 |
+
|
278 |
+
for num_patches in num_patches_list:
|
279 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
280 |
+
query = query.replace('<image>', image_tokens, 1)
|
281 |
+
|
282 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
283 |
+
input_ids = model_inputs['input_ids'].cuda()
|
284 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
285 |
+
generation_config['eos_token_id'] = eos_token_id
|
286 |
+
generation_output = self.generate(
|
287 |
+
pixel_values=pixel_values,
|
288 |
+
input_ids=input_ids,
|
289 |
+
attention_mask=attention_mask,
|
290 |
+
**generation_config
|
291 |
+
)
|
292 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
293 |
+
response = response.split(template.sep)[0].strip()
|
294 |
+
history.append((question, response))
|
295 |
+
if return_history:
|
296 |
+
return response, history
|
297 |
+
else:
|
298 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
299 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
300 |
+
if verbose:
|
301 |
+
print(query_to_print, response)
|
302 |
+
return response
|
303 |
+
|
304 |
+
@torch.no_grad()
|
305 |
+
def generate(
|
306 |
+
self,
|
307 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
308 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
309 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
310 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
311 |
+
generation_config: Optional[GenerationConfig] = None,
|
312 |
+
output_hidden_states: Optional[bool] = None,
|
313 |
+
return_dict: Optional[bool] = None,
|
314 |
+
**generate_kwargs,
|
315 |
+
) -> torch.LongTensor:
|
316 |
+
|
317 |
+
assert self.img_context_token_id is not None
|
318 |
+
if pixel_values is not None:
|
319 |
+
if visual_features is not None:
|
320 |
+
vit_embeds = visual_features
|
321 |
+
else:
|
322 |
+
vit_embeds = self.extract_feature(pixel_values)
|
323 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
324 |
+
B, N, C = input_embeds.shape
|
325 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
326 |
+
|
327 |
+
input_ids = input_ids.reshape(B * N)
|
328 |
+
selected = (input_ids == self.img_context_token_id)
|
329 |
+
assert selected.sum() != 0
|
330 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
331 |
+
|
332 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
333 |
+
else:
|
334 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
335 |
+
|
336 |
+
outputs = self.language_model.generate(
|
337 |
+
inputs_embeds=input_embeds,
|
338 |
+
attention_mask=attention_mask,
|
339 |
+
generation_config=generation_config,
|
340 |
+
output_hidden_states=output_hidden_states,
|
341 |
+
return_dict=return_dict,
|
342 |
+
use_cache=True,
|
343 |
+
**generate_kwargs,
|
344 |
+
)
|
345 |
+
|
346 |
+
return outputs
|
outputs_stats.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6617e7528fb2b779735fd8041125e2300b4c1cd426018479a7560802b72c638
|
3 |
+
size 16741979
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 448
|
19 |
+
}
|
pytorch_model-00001-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98744b0df72730184c8a04dfc043bc9b6abb7611ad0965697b195d94bc377c4d
|
3 |
+
size 1962502837
|
pytorch_model-00002-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcab8b879bc7c81107b50cd452ccc12be883bb4c5c517ac97737ec1c4082a55e
|
3 |
+
size 1964669578
|
pytorch_model-00003-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42c6ed4253aa04611185436f67d585b119955bed88cafd3671cf4919e0fa9738
|
3 |
+
size 1964669642
|
pytorch_model-00004-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87f74eb5ec2a290cd9d22734c54a1c09218ec288e8a727352ac51f64a45019df
|
3 |
+
size 1964669642
|
pytorch_model-00005-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a28e53a02ed9ba3cd7cafd12f036c8d9a6bb7fbfe9a901ff925adbc8fa3dd33
|
3 |
+
size 1320727346
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9176979456
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.model.layers.0.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
|
7 |
+
"language_model.model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
|
8 |
+
"language_model.model.layers.0.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
|
9 |
+
"language_model.model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
|
10 |
+
"language_model.model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00005.bin",
|
11 |
+
"language_model.model.layers.0.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
|
12 |
+
"language_model.model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
|
13 |
+
"language_model.model.layers.0.feed_forward.w2.scale": "pytorch_model-00001-of-00005.bin",
|
14 |
+
"language_model.model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00005.bin",
|
15 |
+
"language_model.model.layers.0.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
|
16 |
+
"language_model.model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
|
17 |
+
"language_model.model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00005.bin",
|
18 |
+
"language_model.model.layers.1.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
|
19 |
+
"language_model.model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
|
20 |
+
"language_model.model.layers.1.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
|
21 |
+
"language_model.model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
|
22 |
+
"language_model.model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00005.bin",
|
23 |
+
"language_model.model.layers.1.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
|
24 |
+
"language_model.model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
|
25 |
+
"language_model.model.layers.1.feed_forward.w2.scale": "pytorch_model-00001-of-00005.bin",
|
26 |
+
"language_model.model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00005.bin",
|
27 |
+
"language_model.model.layers.1.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
|
28 |
+
"language_model.model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
|
29 |
+
"language_model.model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00005.bin",
|
30 |
+
"language_model.model.layers.10.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
31 |
+
"language_model.model.layers.10.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
32 |
+
"language_model.model.layers.10.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
33 |
+
"language_model.model.layers.10.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
34 |
+
"language_model.model.layers.10.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
35 |
+
"language_model.model.layers.10.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
36 |
+
"language_model.model.layers.10.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
37 |
+
"language_model.model.layers.10.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
38 |
+
"language_model.model.layers.10.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
39 |
+
"language_model.model.layers.10.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
40 |
+
"language_model.model.layers.10.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
41 |
+
"language_model.model.layers.10.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
42 |
+
"language_model.model.layers.11.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
43 |
+
"language_model.model.layers.11.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
44 |
+
"language_model.model.layers.11.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
45 |
+
"language_model.model.layers.11.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
46 |
+
"language_model.model.layers.11.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
47 |
+
"language_model.model.layers.11.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
48 |
+
"language_model.model.layers.11.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
49 |
+
"language_model.model.layers.11.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
50 |
+
"language_model.model.layers.11.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
51 |
+
"language_model.model.layers.11.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
52 |
+
"language_model.model.layers.11.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
53 |
+
"language_model.model.layers.11.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
54 |
+
"language_model.model.layers.12.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
55 |
+
"language_model.model.layers.12.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
56 |
+
"language_model.model.layers.12.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
57 |
+
"language_model.model.layers.12.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
58 |
+
"language_model.model.layers.12.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
59 |
+
"language_model.model.layers.12.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
60 |
+
"language_model.model.layers.12.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
61 |
+
"language_model.model.layers.12.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
62 |
+
"language_model.model.layers.12.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
63 |
+
"language_model.model.layers.12.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
64 |
+
"language_model.model.layers.12.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
65 |
+
"language_model.model.layers.12.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
66 |
+
"language_model.model.layers.13.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
67 |
+
"language_model.model.layers.13.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
68 |
+
"language_model.model.layers.13.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
69 |
+
"language_model.model.layers.13.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
70 |
+
"language_model.model.layers.13.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
71 |
+
"language_model.model.layers.13.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
72 |
+
"language_model.model.layers.13.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
73 |
+
"language_model.model.layers.13.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
74 |
+
"language_model.model.layers.13.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
75 |
+
"language_model.model.layers.13.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
76 |
+
"language_model.model.layers.13.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
77 |
+
"language_model.model.layers.13.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
78 |
+
"language_model.model.layers.14.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
79 |
+
"language_model.model.layers.14.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
80 |
+
"language_model.model.layers.14.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
81 |
+
"language_model.model.layers.14.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
82 |
+
"language_model.model.layers.14.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
83 |
+
"language_model.model.layers.14.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
84 |
+
"language_model.model.layers.14.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
85 |
+
"language_model.model.layers.14.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
86 |
+
"language_model.model.layers.14.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
87 |
+
"language_model.model.layers.14.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
88 |
+
"language_model.model.layers.14.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
89 |
+
"language_model.model.layers.14.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
90 |
+
"language_model.model.layers.15.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
91 |
+
"language_model.model.layers.15.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
92 |
+
"language_model.model.layers.15.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
93 |
+
"language_model.model.layers.15.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
94 |
+
"language_model.model.layers.15.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
95 |
+
"language_model.model.layers.15.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
96 |
+
"language_model.model.layers.15.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
97 |
+
"language_model.model.layers.15.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
98 |
+
"language_model.model.layers.15.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
99 |
+
"language_model.model.layers.15.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
100 |
+
"language_model.model.layers.15.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
101 |
+
"language_model.model.layers.15.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
102 |
+
"language_model.model.layers.16.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
103 |
+
"language_model.model.layers.16.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
104 |
+
"language_model.model.layers.16.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
105 |
+
"language_model.model.layers.16.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
106 |
+
"language_model.model.layers.16.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
107 |
+
"language_model.model.layers.16.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
108 |
+
"language_model.model.layers.16.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
109 |
+
"language_model.model.layers.16.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
110 |
+
"language_model.model.layers.16.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
111 |
+
"language_model.model.layers.16.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
112 |
+
"language_model.model.layers.16.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
113 |
+
"language_model.model.layers.16.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
114 |
+
"language_model.model.layers.17.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
115 |
+
"language_model.model.layers.17.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
116 |
+
"language_model.model.layers.17.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
117 |
+
"language_model.model.layers.17.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
118 |
+
"language_model.model.layers.17.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
119 |
+
"language_model.model.layers.17.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
120 |
+
"language_model.model.layers.17.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
121 |
+
"language_model.model.layers.17.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
122 |
+
"language_model.model.layers.17.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
123 |
+
"language_model.model.layers.17.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
124 |
+
"language_model.model.layers.17.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
125 |
+
"language_model.model.layers.17.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
126 |
+
"language_model.model.layers.18.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
127 |
+
"language_model.model.layers.18.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
128 |
+
"language_model.model.layers.18.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
129 |
+
"language_model.model.layers.18.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
130 |
+
"language_model.model.layers.18.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
131 |
+
"language_model.model.layers.18.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
132 |
+
"language_model.model.layers.18.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
133 |
+
"language_model.model.layers.18.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
134 |
+
"language_model.model.layers.18.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
135 |
+
"language_model.model.layers.18.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
136 |
+
"language_model.model.layers.18.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
137 |
+
"language_model.model.layers.18.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
138 |
+
"language_model.model.layers.19.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
139 |
+
"language_model.model.layers.19.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
140 |
+
"language_model.model.layers.19.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
141 |
+
"language_model.model.layers.19.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
142 |
+
"language_model.model.layers.19.attention_norm.weight": "pytorch_model-00003-of-00005.bin",
|
143 |
+
"language_model.model.layers.19.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
144 |
+
"language_model.model.layers.19.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
145 |
+
"language_model.model.layers.19.feed_forward.w2.scale": "pytorch_model-00003-of-00005.bin",
|
146 |
+
"language_model.model.layers.19.feed_forward.w2.weight": "pytorch_model-00003-of-00005.bin",
|
147 |
+
"language_model.model.layers.19.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
148 |
+
"language_model.model.layers.19.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
149 |
+
"language_model.model.layers.19.ffn_norm.weight": "pytorch_model-00003-of-00005.bin",
|
150 |
+
"language_model.model.layers.2.attention.wo.scale": "pytorch_model-00001-of-00005.bin",
|
151 |
+
"language_model.model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00005.bin",
|
152 |
+
"language_model.model.layers.2.attention.wqkv.scale": "pytorch_model-00001-of-00005.bin",
|
153 |
+
"language_model.model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00005.bin",
|
154 |
+
"language_model.model.layers.2.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
155 |
+
"language_model.model.layers.2.feed_forward.w1.scale": "pytorch_model-00001-of-00005.bin",
|
156 |
+
"language_model.model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00005.bin",
|
157 |
+
"language_model.model.layers.2.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
158 |
+
"language_model.model.layers.2.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
159 |
+
"language_model.model.layers.2.feed_forward.w3.scale": "pytorch_model-00001-of-00005.bin",
|
160 |
+
"language_model.model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00005.bin",
|
161 |
+
"language_model.model.layers.2.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
162 |
+
"language_model.model.layers.20.attention.wo.scale": "pytorch_model-00003-of-00005.bin",
|
163 |
+
"language_model.model.layers.20.attention.wo.weight": "pytorch_model-00003-of-00005.bin",
|
164 |
+
"language_model.model.layers.20.attention.wqkv.scale": "pytorch_model-00003-of-00005.bin",
|
165 |
+
"language_model.model.layers.20.attention.wqkv.weight": "pytorch_model-00003-of-00005.bin",
|
166 |
+
"language_model.model.layers.20.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
167 |
+
"language_model.model.layers.20.feed_forward.w1.scale": "pytorch_model-00003-of-00005.bin",
|
168 |
+
"language_model.model.layers.20.feed_forward.w1.weight": "pytorch_model-00003-of-00005.bin",
|
169 |
+
"language_model.model.layers.20.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
170 |
+
"language_model.model.layers.20.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
171 |
+
"language_model.model.layers.20.feed_forward.w3.scale": "pytorch_model-00003-of-00005.bin",
|
172 |
+
"language_model.model.layers.20.feed_forward.w3.weight": "pytorch_model-00003-of-00005.bin",
|
173 |
+
"language_model.model.layers.20.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
174 |
+
"language_model.model.layers.21.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
175 |
+
"language_model.model.layers.21.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
176 |
+
"language_model.model.layers.21.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
177 |
+
"language_model.model.layers.21.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
178 |
+
"language_model.model.layers.21.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
179 |
+
"language_model.model.layers.21.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
180 |
+
"language_model.model.layers.21.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
181 |
+
"language_model.model.layers.21.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
182 |
+
"language_model.model.layers.21.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
183 |
+
"language_model.model.layers.21.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
184 |
+
"language_model.model.layers.21.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
185 |
+
"language_model.model.layers.21.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
186 |
+
"language_model.model.layers.22.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
187 |
+
"language_model.model.layers.22.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
188 |
+
"language_model.model.layers.22.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
189 |
+
"language_model.model.layers.22.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
190 |
+
"language_model.model.layers.22.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
191 |
+
"language_model.model.layers.22.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
192 |
+
"language_model.model.layers.22.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
193 |
+
"language_model.model.layers.22.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
194 |
+
"language_model.model.layers.22.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
195 |
+
"language_model.model.layers.22.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
196 |
+
"language_model.model.layers.22.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
197 |
+
"language_model.model.layers.22.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
198 |
+
"language_model.model.layers.23.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
199 |
+
"language_model.model.layers.23.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
200 |
+
"language_model.model.layers.23.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
201 |
+
"language_model.model.layers.23.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
202 |
+
"language_model.model.layers.23.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
203 |
+
"language_model.model.layers.23.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
204 |
+
"language_model.model.layers.23.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
205 |
+
"language_model.model.layers.23.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
206 |
+
"language_model.model.layers.23.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
207 |
+
"language_model.model.layers.23.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
208 |
+
"language_model.model.layers.23.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
209 |
+
"language_model.model.layers.23.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
210 |
+
"language_model.model.layers.24.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
211 |
+
"language_model.model.layers.24.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
212 |
+
"language_model.model.layers.24.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
213 |
+
"language_model.model.layers.24.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
214 |
+
"language_model.model.layers.24.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
215 |
+
"language_model.model.layers.24.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
216 |
+
"language_model.model.layers.24.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
217 |
+
"language_model.model.layers.24.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
218 |
+
"language_model.model.layers.24.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
219 |
+
"language_model.model.layers.24.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
220 |
+
"language_model.model.layers.24.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
221 |
+
"language_model.model.layers.24.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
222 |
+
"language_model.model.layers.25.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
223 |
+
"language_model.model.layers.25.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
224 |
+
"language_model.model.layers.25.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
225 |
+
"language_model.model.layers.25.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
226 |
+
"language_model.model.layers.25.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
227 |
+
"language_model.model.layers.25.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
228 |
+
"language_model.model.layers.25.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
229 |
+
"language_model.model.layers.25.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
230 |
+
"language_model.model.layers.25.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
231 |
+
"language_model.model.layers.25.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
232 |
+
"language_model.model.layers.25.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
233 |
+
"language_model.model.layers.25.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
234 |
+
"language_model.model.layers.26.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
235 |
+
"language_model.model.layers.26.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
236 |
+
"language_model.model.layers.26.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
237 |
+
"language_model.model.layers.26.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
238 |
+
"language_model.model.layers.26.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
239 |
+
"language_model.model.layers.26.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
240 |
+
"language_model.model.layers.26.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
241 |
+
"language_model.model.layers.26.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
242 |
+
"language_model.model.layers.26.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
243 |
+
"language_model.model.layers.26.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
244 |
+
"language_model.model.layers.26.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
245 |
+
"language_model.model.layers.26.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
246 |
+
"language_model.model.layers.27.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
247 |
+
"language_model.model.layers.27.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
248 |
+
"language_model.model.layers.27.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
249 |
+
"language_model.model.layers.27.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
250 |
+
"language_model.model.layers.27.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
251 |
+
"language_model.model.layers.27.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
252 |
+
"language_model.model.layers.27.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
253 |
+
"language_model.model.layers.27.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
254 |
+
"language_model.model.layers.27.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
255 |
+
"language_model.model.layers.27.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
256 |
+
"language_model.model.layers.27.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
257 |
+
"language_model.model.layers.27.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
258 |
+
"language_model.model.layers.28.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
259 |
+
"language_model.model.layers.28.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
260 |
+
"language_model.model.layers.28.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
261 |
+
"language_model.model.layers.28.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
262 |
+
"language_model.model.layers.28.attention_norm.weight": "pytorch_model-00004-of-00005.bin",
|
263 |
+
"language_model.model.layers.28.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
264 |
+
"language_model.model.layers.28.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
265 |
+
"language_model.model.layers.28.feed_forward.w2.scale": "pytorch_model-00004-of-00005.bin",
|
266 |
+
"language_model.model.layers.28.feed_forward.w2.weight": "pytorch_model-00004-of-00005.bin",
|
267 |
+
"language_model.model.layers.28.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
268 |
+
"language_model.model.layers.28.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
269 |
+
"language_model.model.layers.28.ffn_norm.weight": "pytorch_model-00004-of-00005.bin",
|
270 |
+
"language_model.model.layers.29.attention.wo.scale": "pytorch_model-00004-of-00005.bin",
|
271 |
+
"language_model.model.layers.29.attention.wo.weight": "pytorch_model-00004-of-00005.bin",
|
272 |
+
"language_model.model.layers.29.attention.wqkv.scale": "pytorch_model-00004-of-00005.bin",
|
273 |
+
"language_model.model.layers.29.attention.wqkv.weight": "pytorch_model-00004-of-00005.bin",
|
274 |
+
"language_model.model.layers.29.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
|
275 |
+
"language_model.model.layers.29.feed_forward.w1.scale": "pytorch_model-00004-of-00005.bin",
|
276 |
+
"language_model.model.layers.29.feed_forward.w1.weight": "pytorch_model-00004-of-00005.bin",
|
277 |
+
"language_model.model.layers.29.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
|
278 |
+
"language_model.model.layers.29.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
|
279 |
+
"language_model.model.layers.29.feed_forward.w3.scale": "pytorch_model-00004-of-00005.bin",
|
280 |
+
"language_model.model.layers.29.feed_forward.w3.weight": "pytorch_model-00004-of-00005.bin",
|
281 |
+
"language_model.model.layers.29.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
|
282 |
+
"language_model.model.layers.3.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
283 |
+
"language_model.model.layers.3.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
284 |
+
"language_model.model.layers.3.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
285 |
+
"language_model.model.layers.3.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
286 |
+
"language_model.model.layers.3.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
287 |
+
"language_model.model.layers.3.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
288 |
+
"language_model.model.layers.3.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
289 |
+
"language_model.model.layers.3.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
290 |
+
"language_model.model.layers.3.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
291 |
+
"language_model.model.layers.3.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
292 |
+
"language_model.model.layers.3.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
293 |
+
"language_model.model.layers.3.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
294 |
+
"language_model.model.layers.30.attention.wo.scale": "pytorch_model-00005-of-00005.bin",
|
295 |
+
"language_model.model.layers.30.attention.wo.weight": "pytorch_model-00005-of-00005.bin",
|
296 |
+
"language_model.model.layers.30.attention.wqkv.scale": "pytorch_model-00005-of-00005.bin",
|
297 |
+
"language_model.model.layers.30.attention.wqkv.weight": "pytorch_model-00005-of-00005.bin",
|
298 |
+
"language_model.model.layers.30.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
|
299 |
+
"language_model.model.layers.30.feed_forward.w1.scale": "pytorch_model-00005-of-00005.bin",
|
300 |
+
"language_model.model.layers.30.feed_forward.w1.weight": "pytorch_model-00005-of-00005.bin",
|
301 |
+
"language_model.model.layers.30.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
|
302 |
+
"language_model.model.layers.30.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
|
303 |
+
"language_model.model.layers.30.feed_forward.w3.scale": "pytorch_model-00005-of-00005.bin",
|
304 |
+
"language_model.model.layers.30.feed_forward.w3.weight": "pytorch_model-00005-of-00005.bin",
|
305 |
+
"language_model.model.layers.30.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
|
306 |
+
"language_model.model.layers.31.attention.wo.scale": "pytorch_model-00005-of-00005.bin",
|
307 |
+
"language_model.model.layers.31.attention.wo.weight": "pytorch_model-00005-of-00005.bin",
|
308 |
+
"language_model.model.layers.31.attention.wqkv.scale": "pytorch_model-00005-of-00005.bin",
|
309 |
+
"language_model.model.layers.31.attention.wqkv.weight": "pytorch_model-00005-of-00005.bin",
|
310 |
+
"language_model.model.layers.31.attention_norm.weight": "pytorch_model-00005-of-00005.bin",
|
311 |
+
"language_model.model.layers.31.feed_forward.w1.scale": "pytorch_model-00005-of-00005.bin",
|
312 |
+
"language_model.model.layers.31.feed_forward.w1.weight": "pytorch_model-00005-of-00005.bin",
|
313 |
+
"language_model.model.layers.31.feed_forward.w2.scale": "pytorch_model-00005-of-00005.bin",
|
314 |
+
"language_model.model.layers.31.feed_forward.w2.weight": "pytorch_model-00005-of-00005.bin",
|
315 |
+
"language_model.model.layers.31.feed_forward.w3.scale": "pytorch_model-00005-of-00005.bin",
|
316 |
+
"language_model.model.layers.31.feed_forward.w3.weight": "pytorch_model-00005-of-00005.bin",
|
317 |
+
"language_model.model.layers.31.ffn_norm.weight": "pytorch_model-00005-of-00005.bin",
|
318 |
+
"language_model.model.layers.4.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
319 |
+
"language_model.model.layers.4.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
320 |
+
"language_model.model.layers.4.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
321 |
+
"language_model.model.layers.4.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
322 |
+
"language_model.model.layers.4.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
323 |
+
"language_model.model.layers.4.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
324 |
+
"language_model.model.layers.4.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
325 |
+
"language_model.model.layers.4.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
326 |
+
"language_model.model.layers.4.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
327 |
+
"language_model.model.layers.4.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
328 |
+
"language_model.model.layers.4.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
329 |
+
"language_model.model.layers.4.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
330 |
+
"language_model.model.layers.5.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
331 |
+
"language_model.model.layers.5.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
332 |
+
"language_model.model.layers.5.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
333 |
+
"language_model.model.layers.5.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
334 |
+
"language_model.model.layers.5.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
335 |
+
"language_model.model.layers.5.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
336 |
+
"language_model.model.layers.5.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
337 |
+
"language_model.model.layers.5.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
338 |
+
"language_model.model.layers.5.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
339 |
+
"language_model.model.layers.5.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
340 |
+
"language_model.model.layers.5.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
341 |
+
"language_model.model.layers.5.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
342 |
+
"language_model.model.layers.6.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
343 |
+
"language_model.model.layers.6.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
344 |
+
"language_model.model.layers.6.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
345 |
+
"language_model.model.layers.6.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
346 |
+
"language_model.model.layers.6.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
347 |
+
"language_model.model.layers.6.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
348 |
+
"language_model.model.layers.6.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
349 |
+
"language_model.model.layers.6.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
350 |
+
"language_model.model.layers.6.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
351 |
+
"language_model.model.layers.6.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
352 |
+
"language_model.model.layers.6.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
353 |
+
"language_model.model.layers.6.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
354 |
+
"language_model.model.layers.7.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
355 |
+
"language_model.model.layers.7.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
356 |
+
"language_model.model.layers.7.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
357 |
+
"language_model.model.layers.7.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
358 |
+
"language_model.model.layers.7.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
359 |
+
"language_model.model.layers.7.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
360 |
+
"language_model.model.layers.7.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
361 |
+
"language_model.model.layers.7.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
362 |
+
"language_model.model.layers.7.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
363 |
+
"language_model.model.layers.7.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
364 |
+
"language_model.model.layers.7.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
365 |
+
"language_model.model.layers.7.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
366 |
+
"language_model.model.layers.8.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
367 |
+
"language_model.model.layers.8.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
368 |
+
"language_model.model.layers.8.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
369 |
+
"language_model.model.layers.8.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
370 |
+
"language_model.model.layers.8.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
371 |
+
"language_model.model.layers.8.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
372 |
+
"language_model.model.layers.8.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
373 |
+
"language_model.model.layers.8.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
374 |
+
"language_model.model.layers.8.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
375 |
+
"language_model.model.layers.8.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
376 |
+
"language_model.model.layers.8.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
377 |
+
"language_model.model.layers.8.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
378 |
+
"language_model.model.layers.9.attention.wo.scale": "pytorch_model-00002-of-00005.bin",
|
379 |
+
"language_model.model.layers.9.attention.wo.weight": "pytorch_model-00002-of-00005.bin",
|
380 |
+
"language_model.model.layers.9.attention.wqkv.scale": "pytorch_model-00002-of-00005.bin",
|
381 |
+
"language_model.model.layers.9.attention.wqkv.weight": "pytorch_model-00002-of-00005.bin",
|
382 |
+
"language_model.model.layers.9.attention_norm.weight": "pytorch_model-00002-of-00005.bin",
|
383 |
+
"language_model.model.layers.9.feed_forward.w1.scale": "pytorch_model-00002-of-00005.bin",
|
384 |
+
"language_model.model.layers.9.feed_forward.w1.weight": "pytorch_model-00002-of-00005.bin",
|
385 |
+
"language_model.model.layers.9.feed_forward.w2.scale": "pytorch_model-00002-of-00005.bin",
|
386 |
+
"language_model.model.layers.9.feed_forward.w2.weight": "pytorch_model-00002-of-00005.bin",
|
387 |
+
"language_model.model.layers.9.feed_forward.w3.scale": "pytorch_model-00002-of-00005.bin",
|
388 |
+
"language_model.model.layers.9.feed_forward.w3.weight": "pytorch_model-00002-of-00005.bin",
|
389 |
+
"language_model.model.layers.9.ffn_norm.weight": "pytorch_model-00002-of-00005.bin",
|
390 |
+
"language_model.model.norm.weight": "pytorch_model-00005-of-00005.bin",
|
391 |
+
"language_model.model.tok_embeddings.weight": "pytorch_model-00001-of-00005.bin",
|
392 |
+
"language_model.output.weight": "pytorch_model-00005-of-00005.bin",
|
393 |
+
"mlp1.0.bias": "pytorch_model-00005-of-00005.bin",
|
394 |
+
"mlp1.0.weight": "pytorch_model-00005-of-00005.bin",
|
395 |
+
"mlp1.1.bias": "pytorch_model-00005-of-00005.bin",
|
396 |
+
"mlp1.1.weight": "pytorch_model-00005-of-00005.bin",
|
397 |
+
"mlp1.3.bias": "pytorch_model-00005-of-00005.bin",
|
398 |
+
"mlp1.3.weight": "pytorch_model-00005-of-00005.bin",
|
399 |
+
"vision_model.embeddings.class_embedding": "pytorch_model-00001-of-00005.bin",
|
400 |
+
"vision_model.embeddings.patch_embedding.bias": "pytorch_model-00001-of-00005.bin",
|
401 |
+
"vision_model.embeddings.patch_embedding.weight": "pytorch_model-00001-of-00005.bin",
|
402 |
+
"vision_model.embeddings.position_embedding": "pytorch_model-00001-of-00005.bin",
|
403 |
+
"vision_model.encoder.layers.0.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
404 |
+
"vision_model.encoder.layers.0.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
405 |
+
"vision_model.encoder.layers.0.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
406 |
+
"vision_model.encoder.layers.0.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
407 |
+
"vision_model.encoder.layers.0.ls1": "pytorch_model-00001-of-00005.bin",
|
408 |
+
"vision_model.encoder.layers.0.ls2": "pytorch_model-00001-of-00005.bin",
|
409 |
+
"vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
410 |
+
"vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
411 |
+
"vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
412 |
+
"vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
413 |
+
"vision_model.encoder.layers.0.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
414 |
+
"vision_model.encoder.layers.0.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
415 |
+
"vision_model.encoder.layers.0.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
416 |
+
"vision_model.encoder.layers.0.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
417 |
+
"vision_model.encoder.layers.1.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
418 |
+
"vision_model.encoder.layers.1.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
419 |
+
"vision_model.encoder.layers.1.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
420 |
+
"vision_model.encoder.layers.1.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
421 |
+
"vision_model.encoder.layers.1.ls1": "pytorch_model-00001-of-00005.bin",
|
422 |
+
"vision_model.encoder.layers.1.ls2": "pytorch_model-00001-of-00005.bin",
|
423 |
+
"vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
424 |
+
"vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
425 |
+
"vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
426 |
+
"vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
427 |
+
"vision_model.encoder.layers.1.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
428 |
+
"vision_model.encoder.layers.1.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
429 |
+
"vision_model.encoder.layers.1.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
430 |
+
"vision_model.encoder.layers.1.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
431 |
+
"vision_model.encoder.layers.10.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
432 |
+
"vision_model.encoder.layers.10.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
433 |
+
"vision_model.encoder.layers.10.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
434 |
+
"vision_model.encoder.layers.10.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
435 |
+
"vision_model.encoder.layers.10.ls1": "pytorch_model-00001-of-00005.bin",
|
436 |
+
"vision_model.encoder.layers.10.ls2": "pytorch_model-00001-of-00005.bin",
|
437 |
+
"vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
438 |
+
"vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
439 |
+
"vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
440 |
+
"vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
441 |
+
"vision_model.encoder.layers.10.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
442 |
+
"vision_model.encoder.layers.10.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
443 |
+
"vision_model.encoder.layers.10.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
444 |
+
"vision_model.encoder.layers.10.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
445 |
+
"vision_model.encoder.layers.11.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
446 |
+
"vision_model.encoder.layers.11.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
447 |
+
"vision_model.encoder.layers.11.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
448 |
+
"vision_model.encoder.layers.11.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
449 |
+
"vision_model.encoder.layers.11.ls1": "pytorch_model-00001-of-00005.bin",
|
450 |
+
"vision_model.encoder.layers.11.ls2": "pytorch_model-00001-of-00005.bin",
|
451 |
+
"vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
452 |
+
"vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
453 |
+
"vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
454 |
+
"vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
455 |
+
"vision_model.encoder.layers.11.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
456 |
+
"vision_model.encoder.layers.11.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
457 |
+
"vision_model.encoder.layers.11.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
458 |
+
"vision_model.encoder.layers.11.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
459 |
+
"vision_model.encoder.layers.12.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
460 |
+
"vision_model.encoder.layers.12.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
461 |
+
"vision_model.encoder.layers.12.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
462 |
+
"vision_model.encoder.layers.12.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
463 |
+
"vision_model.encoder.layers.12.ls1": "pytorch_model-00001-of-00005.bin",
|
464 |
+
"vision_model.encoder.layers.12.ls2": "pytorch_model-00001-of-00005.bin",
|
465 |
+
"vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
466 |
+
"vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
467 |
+
"vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
468 |
+
"vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
469 |
+
"vision_model.encoder.layers.12.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
470 |
+
"vision_model.encoder.layers.12.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
471 |
+
"vision_model.encoder.layers.12.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
472 |
+
"vision_model.encoder.layers.12.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
473 |
+
"vision_model.encoder.layers.13.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
474 |
+
"vision_model.encoder.layers.13.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
475 |
+
"vision_model.encoder.layers.13.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
476 |
+
"vision_model.encoder.layers.13.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
477 |
+
"vision_model.encoder.layers.13.ls1": "pytorch_model-00001-of-00005.bin",
|
478 |
+
"vision_model.encoder.layers.13.ls2": "pytorch_model-00001-of-00005.bin",
|
479 |
+
"vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
480 |
+
"vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
481 |
+
"vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
482 |
+
"vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
483 |
+
"vision_model.encoder.layers.13.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
484 |
+
"vision_model.encoder.layers.13.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
485 |
+
"vision_model.encoder.layers.13.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
486 |
+
"vision_model.encoder.layers.13.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
487 |
+
"vision_model.encoder.layers.14.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
488 |
+
"vision_model.encoder.layers.14.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
489 |
+
"vision_model.encoder.layers.14.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
490 |
+
"vision_model.encoder.layers.14.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
491 |
+
"vision_model.encoder.layers.14.ls1": "pytorch_model-00001-of-00005.bin",
|
492 |
+
"vision_model.encoder.layers.14.ls2": "pytorch_model-00001-of-00005.bin",
|
493 |
+
"vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
494 |
+
"vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
495 |
+
"vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
496 |
+
"vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
497 |
+
"vision_model.encoder.layers.14.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
498 |
+
"vision_model.encoder.layers.14.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
499 |
+
"vision_model.encoder.layers.14.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
500 |
+
"vision_model.encoder.layers.14.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
501 |
+
"vision_model.encoder.layers.15.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
502 |
+
"vision_model.encoder.layers.15.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
503 |
+
"vision_model.encoder.layers.15.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
504 |
+
"vision_model.encoder.layers.15.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
505 |
+
"vision_model.encoder.layers.15.ls1": "pytorch_model-00001-of-00005.bin",
|
506 |
+
"vision_model.encoder.layers.15.ls2": "pytorch_model-00001-of-00005.bin",
|
507 |
+
"vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
508 |
+
"vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
509 |
+
"vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
510 |
+
"vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
511 |
+
"vision_model.encoder.layers.15.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
512 |
+
"vision_model.encoder.layers.15.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
513 |
+
"vision_model.encoder.layers.15.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
514 |
+
"vision_model.encoder.layers.15.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
515 |
+
"vision_model.encoder.layers.16.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
516 |
+
"vision_model.encoder.layers.16.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
517 |
+
"vision_model.encoder.layers.16.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
518 |
+
"vision_model.encoder.layers.16.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
519 |
+
"vision_model.encoder.layers.16.ls1": "pytorch_model-00001-of-00005.bin",
|
520 |
+
"vision_model.encoder.layers.16.ls2": "pytorch_model-00001-of-00005.bin",
|
521 |
+
"vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
522 |
+
"vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
523 |
+
"vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
524 |
+
"vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
525 |
+
"vision_model.encoder.layers.16.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
526 |
+
"vision_model.encoder.layers.16.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
527 |
+
"vision_model.encoder.layers.16.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
528 |
+
"vision_model.encoder.layers.16.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
529 |
+
"vision_model.encoder.layers.17.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
530 |
+
"vision_model.encoder.layers.17.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
531 |
+
"vision_model.encoder.layers.17.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
532 |
+
"vision_model.encoder.layers.17.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
533 |
+
"vision_model.encoder.layers.17.ls1": "pytorch_model-00001-of-00005.bin",
|
534 |
+
"vision_model.encoder.layers.17.ls2": "pytorch_model-00001-of-00005.bin",
|
535 |
+
"vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
536 |
+
"vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
537 |
+
"vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
538 |
+
"vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
539 |
+
"vision_model.encoder.layers.17.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
540 |
+
"vision_model.encoder.layers.17.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
541 |
+
"vision_model.encoder.layers.17.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
542 |
+
"vision_model.encoder.layers.17.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
543 |
+
"vision_model.encoder.layers.18.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
544 |
+
"vision_model.encoder.layers.18.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
545 |
+
"vision_model.encoder.layers.18.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
546 |
+
"vision_model.encoder.layers.18.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
547 |
+
"vision_model.encoder.layers.18.ls1": "pytorch_model-00001-of-00005.bin",
|
548 |
+
"vision_model.encoder.layers.18.ls2": "pytorch_model-00001-of-00005.bin",
|
549 |
+
"vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
550 |
+
"vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
551 |
+
"vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
552 |
+
"vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
553 |
+
"vision_model.encoder.layers.18.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
554 |
+
"vision_model.encoder.layers.18.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
555 |
+
"vision_model.encoder.layers.18.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
556 |
+
"vision_model.encoder.layers.18.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
557 |
+
"vision_model.encoder.layers.19.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
558 |
+
"vision_model.encoder.layers.19.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
559 |
+
"vision_model.encoder.layers.19.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
560 |
+
"vision_model.encoder.layers.19.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
561 |
+
"vision_model.encoder.layers.19.ls1": "pytorch_model-00001-of-00005.bin",
|
562 |
+
"vision_model.encoder.layers.19.ls2": "pytorch_model-00001-of-00005.bin",
|
563 |
+
"vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
564 |
+
"vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
565 |
+
"vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
566 |
+
"vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
567 |
+
"vision_model.encoder.layers.19.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
568 |
+
"vision_model.encoder.layers.19.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
569 |
+
"vision_model.encoder.layers.19.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
570 |
+
"vision_model.encoder.layers.19.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
571 |
+
"vision_model.encoder.layers.2.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
572 |
+
"vision_model.encoder.layers.2.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
573 |
+
"vision_model.encoder.layers.2.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
574 |
+
"vision_model.encoder.layers.2.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
575 |
+
"vision_model.encoder.layers.2.ls1": "pytorch_model-00001-of-00005.bin",
|
576 |
+
"vision_model.encoder.layers.2.ls2": "pytorch_model-00001-of-00005.bin",
|
577 |
+
"vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
578 |
+
"vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
579 |
+
"vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
580 |
+
"vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
581 |
+
"vision_model.encoder.layers.2.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
582 |
+
"vision_model.encoder.layers.2.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
583 |
+
"vision_model.encoder.layers.2.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
584 |
+
"vision_model.encoder.layers.2.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
585 |
+
"vision_model.encoder.layers.20.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
586 |
+
"vision_model.encoder.layers.20.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
587 |
+
"vision_model.encoder.layers.20.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
588 |
+
"vision_model.encoder.layers.20.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
589 |
+
"vision_model.encoder.layers.20.ls1": "pytorch_model-00001-of-00005.bin",
|
590 |
+
"vision_model.encoder.layers.20.ls2": "pytorch_model-00001-of-00005.bin",
|
591 |
+
"vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
592 |
+
"vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
593 |
+
"vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
594 |
+
"vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
595 |
+
"vision_model.encoder.layers.20.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
596 |
+
"vision_model.encoder.layers.20.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
597 |
+
"vision_model.encoder.layers.20.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
598 |
+
"vision_model.encoder.layers.20.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
599 |
+
"vision_model.encoder.layers.21.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
600 |
+
"vision_model.encoder.layers.21.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
601 |
+
"vision_model.encoder.layers.21.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
602 |
+
"vision_model.encoder.layers.21.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
603 |
+
"vision_model.encoder.layers.21.ls1": "pytorch_model-00001-of-00005.bin",
|
604 |
+
"vision_model.encoder.layers.21.ls2": "pytorch_model-00001-of-00005.bin",
|
605 |
+
"vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
606 |
+
"vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
607 |
+
"vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
608 |
+
"vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
609 |
+
"vision_model.encoder.layers.21.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
610 |
+
"vision_model.encoder.layers.21.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
611 |
+
"vision_model.encoder.layers.21.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
612 |
+
"vision_model.encoder.layers.21.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
613 |
+
"vision_model.encoder.layers.22.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
614 |
+
"vision_model.encoder.layers.22.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
615 |
+
"vision_model.encoder.layers.22.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
616 |
+
"vision_model.encoder.layers.22.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
617 |
+
"vision_model.encoder.layers.22.ls1": "pytorch_model-00001-of-00005.bin",
|
618 |
+
"vision_model.encoder.layers.22.ls2": "pytorch_model-00001-of-00005.bin",
|
619 |
+
"vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
620 |
+
"vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
621 |
+
"vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
622 |
+
"vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
623 |
+
"vision_model.encoder.layers.22.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
624 |
+
"vision_model.encoder.layers.22.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
625 |
+
"vision_model.encoder.layers.22.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
626 |
+
"vision_model.encoder.layers.22.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
627 |
+
"vision_model.encoder.layers.23.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
628 |
+
"vision_model.encoder.layers.23.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
629 |
+
"vision_model.encoder.layers.23.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
630 |
+
"vision_model.encoder.layers.23.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
631 |
+
"vision_model.encoder.layers.23.ls1": "pytorch_model-00001-of-00005.bin",
|
632 |
+
"vision_model.encoder.layers.23.ls2": "pytorch_model-00001-of-00005.bin",
|
633 |
+
"vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
634 |
+
"vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
635 |
+
"vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
636 |
+
"vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
637 |
+
"vision_model.encoder.layers.23.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
638 |
+
"vision_model.encoder.layers.23.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
639 |
+
"vision_model.encoder.layers.23.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
640 |
+
"vision_model.encoder.layers.23.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
641 |
+
"vision_model.encoder.layers.3.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
642 |
+
"vision_model.encoder.layers.3.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
643 |
+
"vision_model.encoder.layers.3.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
644 |
+
"vision_model.encoder.layers.3.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
645 |
+
"vision_model.encoder.layers.3.ls1": "pytorch_model-00001-of-00005.bin",
|
646 |
+
"vision_model.encoder.layers.3.ls2": "pytorch_model-00001-of-00005.bin",
|
647 |
+
"vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
648 |
+
"vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
649 |
+
"vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
650 |
+
"vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
651 |
+
"vision_model.encoder.layers.3.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
652 |
+
"vision_model.encoder.layers.3.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
653 |
+
"vision_model.encoder.layers.3.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
654 |
+
"vision_model.encoder.layers.3.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
655 |
+
"vision_model.encoder.layers.4.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
656 |
+
"vision_model.encoder.layers.4.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
657 |
+
"vision_model.encoder.layers.4.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
658 |
+
"vision_model.encoder.layers.4.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
659 |
+
"vision_model.encoder.layers.4.ls1": "pytorch_model-00001-of-00005.bin",
|
660 |
+
"vision_model.encoder.layers.4.ls2": "pytorch_model-00001-of-00005.bin",
|
661 |
+
"vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
662 |
+
"vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
663 |
+
"vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
664 |
+
"vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
665 |
+
"vision_model.encoder.layers.4.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
666 |
+
"vision_model.encoder.layers.4.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
667 |
+
"vision_model.encoder.layers.4.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
668 |
+
"vision_model.encoder.layers.4.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
669 |
+
"vision_model.encoder.layers.5.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
670 |
+
"vision_model.encoder.layers.5.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
671 |
+
"vision_model.encoder.layers.5.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
672 |
+
"vision_model.encoder.layers.5.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
673 |
+
"vision_model.encoder.layers.5.ls1": "pytorch_model-00001-of-00005.bin",
|
674 |
+
"vision_model.encoder.layers.5.ls2": "pytorch_model-00001-of-00005.bin",
|
675 |
+
"vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
676 |
+
"vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
677 |
+
"vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
678 |
+
"vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
679 |
+
"vision_model.encoder.layers.5.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
680 |
+
"vision_model.encoder.layers.5.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
681 |
+
"vision_model.encoder.layers.5.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
682 |
+
"vision_model.encoder.layers.5.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
683 |
+
"vision_model.encoder.layers.6.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
684 |
+
"vision_model.encoder.layers.6.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
685 |
+
"vision_model.encoder.layers.6.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
686 |
+
"vision_model.encoder.layers.6.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
687 |
+
"vision_model.encoder.layers.6.ls1": "pytorch_model-00001-of-00005.bin",
|
688 |
+
"vision_model.encoder.layers.6.ls2": "pytorch_model-00001-of-00005.bin",
|
689 |
+
"vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
690 |
+
"vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
691 |
+
"vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
692 |
+
"vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
693 |
+
"vision_model.encoder.layers.6.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
694 |
+
"vision_model.encoder.layers.6.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
695 |
+
"vision_model.encoder.layers.6.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
696 |
+
"vision_model.encoder.layers.6.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
697 |
+
"vision_model.encoder.layers.7.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
698 |
+
"vision_model.encoder.layers.7.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
699 |
+
"vision_model.encoder.layers.7.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
700 |
+
"vision_model.encoder.layers.7.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
701 |
+
"vision_model.encoder.layers.7.ls1": "pytorch_model-00001-of-00005.bin",
|
702 |
+
"vision_model.encoder.layers.7.ls2": "pytorch_model-00001-of-00005.bin",
|
703 |
+
"vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
704 |
+
"vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
705 |
+
"vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
706 |
+
"vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
707 |
+
"vision_model.encoder.layers.7.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
708 |
+
"vision_model.encoder.layers.7.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
709 |
+
"vision_model.encoder.layers.7.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
710 |
+
"vision_model.encoder.layers.7.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
711 |
+
"vision_model.encoder.layers.8.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
712 |
+
"vision_model.encoder.layers.8.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
713 |
+
"vision_model.encoder.layers.8.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
714 |
+
"vision_model.encoder.layers.8.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
715 |
+
"vision_model.encoder.layers.8.ls1": "pytorch_model-00001-of-00005.bin",
|
716 |
+
"vision_model.encoder.layers.8.ls2": "pytorch_model-00001-of-00005.bin",
|
717 |
+
"vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
718 |
+
"vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
719 |
+
"vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
720 |
+
"vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
721 |
+
"vision_model.encoder.layers.8.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
722 |
+
"vision_model.encoder.layers.8.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
723 |
+
"vision_model.encoder.layers.8.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
724 |
+
"vision_model.encoder.layers.8.norm2.weight": "pytorch_model-00001-of-00005.bin",
|
725 |
+
"vision_model.encoder.layers.9.attn.proj.bias": "pytorch_model-00001-of-00005.bin",
|
726 |
+
"vision_model.encoder.layers.9.attn.proj.weight": "pytorch_model-00001-of-00005.bin",
|
727 |
+
"vision_model.encoder.layers.9.attn.qkv.bias": "pytorch_model-00001-of-00005.bin",
|
728 |
+
"vision_model.encoder.layers.9.attn.qkv.weight": "pytorch_model-00001-of-00005.bin",
|
729 |
+
"vision_model.encoder.layers.9.ls1": "pytorch_model-00001-of-00005.bin",
|
730 |
+
"vision_model.encoder.layers.9.ls2": "pytorch_model-00001-of-00005.bin",
|
731 |
+
"vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
|
732 |
+
"vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
|
733 |
+
"vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
|
734 |
+
"vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
|
735 |
+
"vision_model.encoder.layers.9.norm1.bias": "pytorch_model-00001-of-00005.bin",
|
736 |
+
"vision_model.encoder.layers.9.norm1.weight": "pytorch_model-00001-of-00005.bin",
|
737 |
+
"vision_model.encoder.layers.9.norm2.bias": "pytorch_model-00001-of-00005.bin",
|
738 |
+
"vision_model.encoder.layers.9.norm2.weight": "pytorch_model-00001-of-00005.bin"
|
739 |
+
}
|
740 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>",
|
9 |
+
"<img>",
|
10 |
+
"</img>",
|
11 |
+
"<IMG_CONTEXT>",
|
12 |
+
"<quad>",
|
13 |
+
"</quad>",
|
14 |
+
"<ref>",
|
15 |
+
"</ref>",
|
16 |
+
"<box>",
|
17 |
+
"</box>",
|
18 |
+
"<action>",
|
19 |
+
"</action>",
|
20 |
+
"<cam>",
|
21 |
+
"</cam>"
|
22 |
+
],
|
23 |
+
"bos_token": {
|
24 |
+
"content": "<s>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"eos_token": {
|
31 |
+
"content": "</s>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"pad_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization classes for InternLM."""
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
29 |
+
|
30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
31 |
+
|
32 |
+
|
33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_file (`str`):
|
40 |
+
Path to the vocabulary file.
|
41 |
+
"""
|
42 |
+
|
43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
46 |
+
_auto_class = 'AutoTokenizer'
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file,
|
51 |
+
unk_token='<unk>',
|
52 |
+
bos_token='<s>',
|
53 |
+
eos_token='</s>',
|
54 |
+
pad_token='</s>',
|
55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
56 |
+
add_bos_token=True,
|
57 |
+
add_eos_token=False,
|
58 |
+
decode_with_prefix_space=False,
|
59 |
+
clean_up_tokenization_spaces=False,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
63 |
+
self.vocab_file = vocab_file
|
64 |
+
self.add_bos_token = add_bos_token
|
65 |
+
self.add_eos_token = add_eos_token
|
66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
68 |
+
self.sp_model.Load(vocab_file)
|
69 |
+
self._no_prefix_space_tokens = None
|
70 |
+
super().__init__(
|
71 |
+
bos_token=bos_token,
|
72 |
+
eos_token=eos_token,
|
73 |
+
unk_token=unk_token,
|
74 |
+
pad_token=pad_token,
|
75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
76 |
+
**kwargs,
|
77 |
+
)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def no_prefix_space_tokens(self):
|
81 |
+
if self._no_prefix_space_tokens is None:
|
82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
84 |
+
return self._no_prefix_space_tokens
|
85 |
+
|
86 |
+
@property
|
87 |
+
def vocab_size(self):
|
88 |
+
"""Returns vocab size"""
|
89 |
+
return self.sp_model.get_piece_size()
|
90 |
+
|
91 |
+
@property
|
92 |
+
def bos_token_id(self) -> Optional[int]:
|
93 |
+
return self.sp_model.bos_id()
|
94 |
+
|
95 |
+
@property
|
96 |
+
def eos_token_id(self) -> Optional[int]:
|
97 |
+
return self.sp_model.eos_id()
|
98 |
+
|
99 |
+
def get_vocab(self):
|
100 |
+
"""Returns vocab as a dict"""
|
101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
102 |
+
vocab.update(self.added_tokens_encoder)
|
103 |
+
return vocab
|
104 |
+
|
105 |
+
def _tokenize(self, text):
|
106 |
+
"""Returns a tokenized string."""
|
107 |
+
return self.sp_model.encode(text, out_type=str)
|
108 |
+
|
109 |
+
def _convert_token_to_id(self, token):
|
110 |
+
"""Converts a token (str) in an id using the vocab."""
|
111 |
+
return self.sp_model.piece_to_id(token)
|
112 |
+
|
113 |
+
def _convert_id_to_token(self, index):
|
114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
115 |
+
token = self.sp_model.IdToPiece(index)
|
116 |
+
return token
|
117 |
+
|
118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
120 |
+
return ' ' + decoded
|
121 |
+
else:
|
122 |
+
return decoded
|
123 |
+
|
124 |
+
def convert_tokens_to_string(self, tokens):
|
125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
126 |
+
current_sub_tokens = []
|
127 |
+
out_string = ''
|
128 |
+
prev_is_special = False
|
129 |
+
for token in tokens:
|
130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
131 |
+
if token in self.all_special_tokens:
|
132 |
+
if not prev_is_special:
|
133 |
+
out_string += ' '
|
134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
135 |
+
prev_is_special = True
|
136 |
+
current_sub_tokens = []
|
137 |
+
else:
|
138 |
+
current_sub_tokens.append(token)
|
139 |
+
prev_is_special = False
|
140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
141 |
+
out_string = self.clean_up_tokenization(out_string)
|
142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
143 |
+
return out_string[1:]
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, 'wb') as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
if self.add_bos_token:
|
174 |
+
bos_token_ids = [self.bos_token_id]
|
175 |
+
else:
|
176 |
+
bos_token_ids = []
|
177 |
+
|
178 |
+
output = bos_token_ids + token_ids_0
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + token_ids_1
|
182 |
+
|
183 |
+
if self.add_eos_token:
|
184 |
+
output = output + [self.eos_token_id]
|
185 |
+
|
186 |
+
return output
|
187 |
+
|
188 |
+
def get_special_tokens_mask(
|
189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
209 |
+
)
|
210 |
+
|
211 |
+
if token_ids_1 is None:
|
212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
214 |
+
|
215 |
+
def create_token_type_ids_from_sequences(
|
216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
+
) -> List[int]:
|
218 |
+
"""
|
219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
220 |
+
use of token type ids, therefore a list of zeros is returned.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
token_ids_0 (`List[int]`):
|
224 |
+
List of IDs.
|
225 |
+
token_ids_1 (`List[int]`, *optional*):
|
226 |
+
Optional second list of IDs for sequence pairs.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
`List[int]`: List of zeros.
|
230 |
+
"""
|
231 |
+
eos = [self.eos_token_id]
|
232 |
+
|
233 |
+
if token_ids_1 is None:
|
234 |
+
return len(token_ids_0 + eos) * [0]
|
235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"92538": {
|
28 |
+
"content": "<|plugin|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"92539": {
|
36 |
+
"content": "<|interpreter|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"92540": {
|
44 |
+
"content": "<|action_end|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"92541": {
|
52 |
+
"content": "<|action_start|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"92542": {
|
60 |
+
"content": "<|im_end|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"92543": {
|
68 |
+
"content": "<|im_start|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"92544": {
|
76 |
+
"content": "<img>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"92545": {
|
84 |
+
"content": "</img>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"92546": {
|
92 |
+
"content": "<IMG_CONTEXT>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"92547": {
|
100 |
+
"content": "<quad>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"92548": {
|
108 |
+
"content": "</quad>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"92549": {
|
116 |
+
"content": "<ref>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"92550": {
|
124 |
+
"content": "</ref>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"92551": {
|
132 |
+
"content": "<box>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"92552": {
|
140 |
+
"content": "</box>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"92553": {
|
148 |
+
"content": "<action>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"92554": {
|
156 |
+
"content": "</action>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"92555": {
|
164 |
+
"content": "<cam>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"92556": {
|
172 |
+
"content": "</cam>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
}
|
179 |
+
},
|
180 |
+
"additional_special_tokens": [
|
181 |
+
"<|im_start|>",
|
182 |
+
"<|im_end|>",
|
183 |
+
"<|action_start|>",
|
184 |
+
"<|action_end|>",
|
185 |
+
"<|interpreter|>",
|
186 |
+
"<|plugin|>",
|
187 |
+
"<img>",
|
188 |
+
"</img>",
|
189 |
+
"<IMG_CONTEXT>",
|
190 |
+
"<quad>",
|
191 |
+
"</quad>",
|
192 |
+
"<ref>",
|
193 |
+
"</ref>",
|
194 |
+
"<box>",
|
195 |
+
"</box>",
|
196 |
+
"<action>",
|
197 |
+
"</action>",
|
198 |
+
"<cam>",
|
199 |
+
"</cam>"
|
200 |
+
],
|
201 |
+
"auto_map": {
|
202 |
+
"AutoTokenizer": [
|
203 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
204 |
+
null
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"bos_token": "<s>",
|
208 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
209 |
+
"clean_up_tokenization_spaces": false,
|
210 |
+
"eos_token": "</s>",
|
211 |
+
"model_max_length": 2048,
|
212 |
+
"pad_token": "</s>",
|
213 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
214 |
+
"unk_token": "<unk>"
|
215 |
+
}
|