Commit
·
4cb78ba
1
Parent(s):
82f9ab2
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Silly-Machine/TuPyE-Dataset
|
5 |
+
language:
|
6 |
+
- pt
|
7 |
+
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
base_model: neuralmind/bert-base-portuguese-cased
|
10 |
+
widget:
|
11 |
+
- text: 'Bom dia, flor do dia!!'
|
12 |
+
|
13 |
+
model-index:
|
14 |
+
- name: Yi-34B
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: text-classfication
|
18 |
+
dataset:
|
19 |
+
name: Silly-Machine/TuPyE-Dataset
|
20 |
+
type: Silly-Machine/TuPyE-Dataset
|
21 |
+
metrics:
|
22 |
+
- name: f1
|
23 |
+
type: f1
|
24 |
+
value: 64.59
|
25 |
+
source:
|
26 |
+
name: Open LLM Leaderboard
|
27 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
28 |
+
---
|
29 |
+
|
30 |
+
## Introduction
|
31 |
+
|
32 |
+
|
33 |
+
Tupi-BERT-Base is a fine-tuned BERT model designed specifically for binary classification of hate speech in Portuguese. Derived from the [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), TuPi-Base is refinde solution for addressing hate speech concerns.
|
34 |
+
For more details or specific inquiries, please refer to the [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
|
35 |
+
|
36 |
+
The efficacy of Language Models can exhibit notable variations when confronted with a shift in domain between training and test data. In the creation of a specialized Portuguese Language Model tailored for hate speech classification, the original BERTimbau model underwent fine-tuning processe carried out on the [TuPi Hate Speech DataSet](https://huggingface.co/datasets/FpOliveira/TuPi-Portuguese-Hate-Speech-Dataset-Binary), sourced from diverse social networks.
|
37 |
+
|
38 |
+
## Available models
|
39 |
+
|
40 |
+
| Model | Arch. | #Layers | #Params |
|
41 |
+
| ---------------------------------------- | ---------- | ------- | ------- |
|
42 |
+
| `Silly-Machine/TuPy-Bert-Base-Binary-Classifier` | BERT-Base |12 |109M|
|
43 |
+
| `Silly-Machine/TuPy-Bert-Large-Binary-Classifier` | BERT-Large | 24 | 334M |
|
44 |
+
| `Silly-Machine/TuPy-Bert-Base-Multilabel` | BERT-Base | 12 | 109M |
|
45 |
+
| `Silly-Machine/TuPy-Bert-Large-Multilabel` | BERT-Large | 24 | 334M |
|
46 |
+
|
47 |
+
## Example usage usage
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
51 |
+
import torch
|
52 |
+
import numpy as np
|
53 |
+
from scipy.special import softmax
|
54 |
+
|
55 |
+
def classify_hate_speech(model_name, text):
|
56 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
config = AutoConfig.from_pretrained(model_name)
|
59 |
+
|
60 |
+
# Tokenize input text and prepare model input
|
61 |
+
model_input = tokenizer(text, padding=True, return_tensors="pt")
|
62 |
+
|
63 |
+
# Get model output scores
|
64 |
+
with torch.no_grad():
|
65 |
+
output = model(**model_input)
|
66 |
+
scores = softmax(output.logits.numpy(), axis=1)
|
67 |
+
ranking = np.argsort(scores[0])[::-1]
|
68 |
+
|
69 |
+
# Print the results
|
70 |
+
for i, rank in enumerate(ranking):
|
71 |
+
label = config.id2label[rank]
|
72 |
+
score = scores[0, rank]
|
73 |
+
print(f"{i + 1}) Label: {label} Score: {score:.4f}")
|
74 |
+
|
75 |
+
# Example usage
|
76 |
+
model_name = "Silly-Machine/TuPy-Bert-Base-Multilabel"
|
77 |
+
text = "Bom dia, flor do dia!!"
|
78 |
+
classify_hate_speech(model_name, text)
|
79 |
+
|
80 |
+
```
|