|
|
|
""" |
|
Created on Sat Jan 14 15:06:31 2023 |
|
|
|
@author: Lenovo |
|
""" |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import plotly.express as px |
|
import streamlit as st |
|
import plotly.graph_objects as go |
|
import seaborn as sns |
|
|
|
|
|
@st.cache |
|
def load_data(): |
|
time_df= pd.read_csv(r"C:\Users\Lenovo\Downloads\sales.csv") |
|
return time_df |
|
|
|
time_df = load_data() |
|
|
|
def time_Series_data(): |
|
import prophet |
|
|
|
st.header("Time Series Analysis") |
|
|
|
time_df['Order Date'] = pd.to_datetime(time_df['Order Date']) |
|
|
|
time_df['year'] = time_df['Order Date'].apply(lambda x : x.year) |
|
time_df['month'] = time_df['Order Date'].apply(lambda x : x.month) |
|
time_df1 = time_df.rename(columns={'Order Date': 'ds', 'Sales': 'y'}) |
|
model = prophet.Prophet() |
|
model.fit(time_df1) |
|
future = model.make_future_dataframe(periods=365) |
|
forecast = model.predict(future) |
|
|
|
|
|
with st.echo(): |
|
st.write("Yearly Prediction") |
|
fig1 = model.plot(forecast) |
|
st.pyplot(fig1) |
|
|
|
|
|
with st.echo(): |
|
st.header("Plotting Yearly,Seasonal,weekly Trends") |
|
from prophet.plot import plot_plotly, plot_components_plotly |
|
model = prophet.Prophet() |
|
model.fit(time_df1) |
|
forecast = model.predict(time_df1) |
|
fig = plot_components_plotly(model, forecast) |
|
st.plotly_chart(fig) |
|
|
|
return time_Series_data() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|